基于自回归过程的功率指数误差创新模型

A. A Oyinloye, O. J. Ayodele, V. O. Abifade
{"title":"基于自回归过程的功率指数误差创新模型","authors":"A. A Oyinloye, O. J. Ayodele, V. O. Abifade","doi":"10.37745/ijmss.13/vol11n21321","DOIUrl":null,"url":null,"abstract":"The regular gussian assumption of the error terms is employed in dynamic time series models when the underlying data are not normally distributed, this often results in incorrect parameter estimations and forecast error. As a result, this paper developed maximum likelihood method of estimation of parameters of an autoregressive model of order 2 [AR (2)] with power-exponential innovations. The performance of the parameters of AR (2) in comparison to normal error innovations was evaluated using the Akaike information criterion (AIC) and forecast performance metrics (RMSE and MAE). Both real data sets and simulated data with different sample sizes were used to validate the models. The results revealed that, it is more appropriate and efficient to model non-normal time series data using AR (2) exponential power error innovations.","PeriodicalId":476297,"journal":{"name":"International journal of mathematics and statistics studies","volume":"68 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Modeling Power Exponential Error Innovations with Autoregressive Process\",\"authors\":\"A. A Oyinloye, O. J. Ayodele, V. O. Abifade\",\"doi\":\"10.37745/ijmss.13/vol11n21321\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The regular gussian assumption of the error terms is employed in dynamic time series models when the underlying data are not normally distributed, this often results in incorrect parameter estimations and forecast error. As a result, this paper developed maximum likelihood method of estimation of parameters of an autoregressive model of order 2 [AR (2)] with power-exponential innovations. The performance of the parameters of AR (2) in comparison to normal error innovations was evaluated using the Akaike information criterion (AIC) and forecast performance metrics (RMSE and MAE). Both real data sets and simulated data with different sample sizes were used to validate the models. The results revealed that, it is more appropriate and efficient to model non-normal time series data using AR (2) exponential power error innovations.\",\"PeriodicalId\":476297,\"journal\":{\"name\":\"International journal of mathematics and statistics studies\",\"volume\":\"68 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-02-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International journal of mathematics and statistics studies\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.37745/ijmss.13/vol11n21321\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International journal of mathematics and statistics studies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.37745/ijmss.13/vol11n21321","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在基础数据非正态分布的动态时间序列模型中,误差项采用正则高斯假设,这往往会导致参数估计错误和预测误差。因此,本文采用幂指数创新方法,提出了2阶自回归模型[AR(2)]参数估计的极大似然方法。采用赤池信息准则(AIC)和预测性能指标(RMSE和MAE)对AR(2)参数与正态误差创新的性能进行了评价。采用不同样本量的真实数据集和模拟数据对模型进行了验证。结果表明,采用AR(2)指数功率误差创新方法对非正态时间序列数据进行建模更为合适和有效。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Modeling Power Exponential Error Innovations with Autoregressive Process
The regular gussian assumption of the error terms is employed in dynamic time series models when the underlying data are not normally distributed, this often results in incorrect parameter estimations and forecast error. As a result, this paper developed maximum likelihood method of estimation of parameters of an autoregressive model of order 2 [AR (2)] with power-exponential innovations. The performance of the parameters of AR (2) in comparison to normal error innovations was evaluated using the Akaike information criterion (AIC) and forecast performance metrics (RMSE and MAE). Both real data sets and simulated data with different sample sizes were used to validate the models. The results revealed that, it is more appropriate and efficient to model non-normal time series data using AR (2) exponential power error innovations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信