AH法:一种用遗传算法对所找到的最优进行邻近检查的新方法

IF 0.5 Q4 TELECOMMUNICATIONS
{"title":"AH法:一种用遗传算法对所找到的最优进行邻近检查的新方法","authors":"","doi":"10.24425/ijet.2022.141291","DOIUrl":null,"url":null,"abstract":"— The paper presents a novel heuristic procedure (further called the AH Method) to investigate function shape in the direct vicinity of the found optimum solution. The survey is conducted using only the space sampling collected during the optimization process with an evolutionary algorithm. For this purpose the finite model of point-set is considered. The statistical analysis of the sampling quality based upon the coverage of the points in question over the entire attraction region is exploited. The tolerance boundaries of the parameters are determined for the user-specified increase of the objective function value above the found minimum. The presented test-case data prove that the proposed approach is comparable to other optimum neighborhood examination algorithms. Also, the AH Method requires noticeably shorter computational time than its counterparts. This is achieved by a repeated, second use of points from optimization without additional objective function calls, as well as significant repository size reduction during preprocessing.","PeriodicalId":13922,"journal":{"name":"International Journal of Electronics and Telecommunications","volume":null,"pages":null},"PeriodicalIF":0.5000,"publicationDate":"2023-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"AH Method: a Novel Routine for Vicinity Examination of the Optimum Found with a Genetic Algorithm\",\"authors\":\"\",\"doi\":\"10.24425/ijet.2022.141291\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"— The paper presents a novel heuristic procedure (further called the AH Method) to investigate function shape in the direct vicinity of the found optimum solution. The survey is conducted using only the space sampling collected during the optimization process with an evolutionary algorithm. For this purpose the finite model of point-set is considered. The statistical analysis of the sampling quality based upon the coverage of the points in question over the entire attraction region is exploited. The tolerance boundaries of the parameters are determined for the user-specified increase of the objective function value above the found minimum. The presented test-case data prove that the proposed approach is comparable to other optimum neighborhood examination algorithms. Also, the AH Method requires noticeably shorter computational time than its counterparts. This is achieved by a repeated, second use of points from optimization without additional objective function calls, as well as significant repository size reduction during preprocessing.\",\"PeriodicalId\":13922,\"journal\":{\"name\":\"International Journal of Electronics and Telecommunications\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2023-11-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Electronics and Telecommunications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.24425/ijet.2022.141291\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"TELECOMMUNICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Electronics and Telecommunications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24425/ijet.2022.141291","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"TELECOMMUNICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。
AH Method: a Novel Routine for Vicinity Examination of the Optimum Found with a Genetic Algorithm
— The paper presents a novel heuristic procedure (further called the AH Method) to investigate function shape in the direct vicinity of the found optimum solution. The survey is conducted using only the space sampling collected during the optimization process with an evolutionary algorithm. For this purpose the finite model of point-set is considered. The statistical analysis of the sampling quality based upon the coverage of the points in question over the entire attraction region is exploited. The tolerance boundaries of the parameters are determined for the user-specified increase of the objective function value above the found minimum. The presented test-case data prove that the proposed approach is comparable to other optimum neighborhood examination algorithms. Also, the AH Method requires noticeably shorter computational time than its counterparts. This is achieved by a repeated, second use of points from optimization without additional objective function calls, as well as significant repository size reduction during preprocessing.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.50
自引率
14.30%
发文量
0
审稿时长
12 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信