基于k -均值聚类、基于萤火虫的数据速率优化和蚁群路由的WSN拥塞控制

IF 0.5 Q4 TELECOMMUNICATIONS
{"title":"基于k -均值聚类、基于萤火虫的数据速率优化和蚁群路由的WSN拥塞控制","authors":"","doi":"10.24425/ijet.2022.141286","DOIUrl":null,"url":null,"abstract":"— Wireless sensor network (WSN) is assortment of sensor nodes proficient in environmental information sensing, refining it and transmitting it to base station in sovereign manner. The minute sensors communicate themselves to sense and monitor the environment. The main challenges are limited power, short communication range, low bandwidth and limited processing. The power source of these sensor nodes are the main hurdle in design of energy efficient network. The main objective of the proposed clustering and data transmission algorithm is to augment network performance by using swarm intelligence approach. This technique is based on K-mean based clustering, data rate optimization using firefly optimization algorithm and Ant colony optimization based data forwarding. The KFOA is divided in three parts: (1) Clustering of sensor nodes using K-mean technique and (2) data rate optimization for controlling congestion and (3) using shortest path for data transmission based on Ant colony optimization (ACO) technique. The performance is analyzed based on two scenarios as with rate optimization and without rate optimization. The first scenario consists of two operations as k-mean clustering and ACO based routing. The second scenario consists of three operations as mentioned in KFOA. The performance is evaluated in terms of throughput, packet delivery ratio, energy dissipation and residual energy analysis. The simulation results show improvement in performance by using with rate optimization technique.","PeriodicalId":13922,"journal":{"name":"International Journal of Electronics and Telecommunications","volume":"34 1","pages":"0"},"PeriodicalIF":0.5000,"publicationDate":"2023-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"KFOA: K-mean Clustering, Firefly Based Data Rate Optimization and ACO Routing for Congestion Control in WSN\",\"authors\":\"\",\"doi\":\"10.24425/ijet.2022.141286\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"— Wireless sensor network (WSN) is assortment of sensor nodes proficient in environmental information sensing, refining it and transmitting it to base station in sovereign manner. The minute sensors communicate themselves to sense and monitor the environment. The main challenges are limited power, short communication range, low bandwidth and limited processing. The power source of these sensor nodes are the main hurdle in design of energy efficient network. The main objective of the proposed clustering and data transmission algorithm is to augment network performance by using swarm intelligence approach. This technique is based on K-mean based clustering, data rate optimization using firefly optimization algorithm and Ant colony optimization based data forwarding. The KFOA is divided in three parts: (1) Clustering of sensor nodes using K-mean technique and (2) data rate optimization for controlling congestion and (3) using shortest path for data transmission based on Ant colony optimization (ACO) technique. The performance is analyzed based on two scenarios as with rate optimization and without rate optimization. The first scenario consists of two operations as k-mean clustering and ACO based routing. The second scenario consists of three operations as mentioned in KFOA. The performance is evaluated in terms of throughput, packet delivery ratio, energy dissipation and residual energy analysis. The simulation results show improvement in performance by using with rate optimization technique.\",\"PeriodicalId\":13922,\"journal\":{\"name\":\"International Journal of Electronics and Telecommunications\",\"volume\":\"34 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2023-11-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Electronics and Telecommunications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.24425/ijet.2022.141286\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"TELECOMMUNICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Electronics and Telecommunications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24425/ijet.2022.141286","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"TELECOMMUNICATIONS","Score":null,"Total":0}
引用次数: 1

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。
KFOA: K-mean Clustering, Firefly Based Data Rate Optimization and ACO Routing for Congestion Control in WSN
— Wireless sensor network (WSN) is assortment of sensor nodes proficient in environmental information sensing, refining it and transmitting it to base station in sovereign manner. The minute sensors communicate themselves to sense and monitor the environment. The main challenges are limited power, short communication range, low bandwidth and limited processing. The power source of these sensor nodes are the main hurdle in design of energy efficient network. The main objective of the proposed clustering and data transmission algorithm is to augment network performance by using swarm intelligence approach. This technique is based on K-mean based clustering, data rate optimization using firefly optimization algorithm and Ant colony optimization based data forwarding. The KFOA is divided in three parts: (1) Clustering of sensor nodes using K-mean technique and (2) data rate optimization for controlling congestion and (3) using shortest path for data transmission based on Ant colony optimization (ACO) technique. The performance is analyzed based on two scenarios as with rate optimization and without rate optimization. The first scenario consists of two operations as k-mean clustering and ACO based routing. The second scenario consists of three operations as mentioned in KFOA. The performance is evaluated in terms of throughput, packet delivery ratio, energy dissipation and residual energy analysis. The simulation results show improvement in performance by using with rate optimization technique.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.50
自引率
14.30%
发文量
0
审稿时长
12 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信