基于OptiSystem的光纤光栅GPON入户设备网络执行仿真设计

IF 0.5 Q4 TELECOMMUNICATIONS
{"title":"基于OptiSystem的光纤光栅GPON入户设备网络执行仿真设计","authors":"","doi":"10.24425/ijet.2022.143886","DOIUrl":null,"url":null,"abstract":"— Consumers require high-speed data transmission for different activities, such as smartphone usage, live broadcasting of news, and video conferencing. Therefore, a reliable communication network is needed to provide this kind of service to users. Fiber to the home (FTTH) is an optical fiber architecture that uses fiber cables in the access network for direct and final connection to homes or offices of customers. Networks based on FTTH can offer high performance, speed, and quality. An optical fiber communication system based on FTTH device ingress network using gigabit passive optical networks (GPONs) with fiber Bragg grating (FBG) and optical amplifier is designed and analyzed in this study. The developed design based on the FTTH device and FBG shows a low bit error rate (BER) for downstream and upstream configurations with an optical fiber length of 20 km. Downstream and upstream configurations achieve a Q-factor of 89.5 and 181.3, respectively. Achievable sensitivity of the developed system is −28 dBm, whil e the received signal based on OptiSystem is −25.59 dBm. FTTH with FBG will play a major role in the future and provide effective solutions for a wide variety of applications in network communication systems and data transmission rates.","PeriodicalId":13922,"journal":{"name":"International Journal of Electronics and Telecommunications","volume":"34 2","pages":"0"},"PeriodicalIF":0.5000,"publicationDate":"2023-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Execution Simulation Design of Fiber-to-the-home (FTTH) Device Ingress Networks Using GPON with FBG Based on OptiSystem\",\"authors\":\"\",\"doi\":\"10.24425/ijet.2022.143886\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"— Consumers require high-speed data transmission for different activities, such as smartphone usage, live broadcasting of news, and video conferencing. Therefore, a reliable communication network is needed to provide this kind of service to users. Fiber to the home (FTTH) is an optical fiber architecture that uses fiber cables in the access network for direct and final connection to homes or offices of customers. Networks based on FTTH can offer high performance, speed, and quality. An optical fiber communication system based on FTTH device ingress network using gigabit passive optical networks (GPONs) with fiber Bragg grating (FBG) and optical amplifier is designed and analyzed in this study. The developed design based on the FTTH device and FBG shows a low bit error rate (BER) for downstream and upstream configurations with an optical fiber length of 20 km. Downstream and upstream configurations achieve a Q-factor of 89.5 and 181.3, respectively. Achievable sensitivity of the developed system is −28 dBm, whil e the received signal based on OptiSystem is −25.59 dBm. FTTH with FBG will play a major role in the future and provide effective solutions for a wide variety of applications in network communication systems and data transmission rates.\",\"PeriodicalId\":13922,\"journal\":{\"name\":\"International Journal of Electronics and Telecommunications\",\"volume\":\"34 2\",\"pages\":\"0\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2023-11-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Electronics and Telecommunications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.24425/ijet.2022.143886\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"TELECOMMUNICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Electronics and Telecommunications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24425/ijet.2022.143886","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"TELECOMMUNICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。
Execution Simulation Design of Fiber-to-the-home (FTTH) Device Ingress Networks Using GPON with FBG Based on OptiSystem
— Consumers require high-speed data transmission for different activities, such as smartphone usage, live broadcasting of news, and video conferencing. Therefore, a reliable communication network is needed to provide this kind of service to users. Fiber to the home (FTTH) is an optical fiber architecture that uses fiber cables in the access network for direct and final connection to homes or offices of customers. Networks based on FTTH can offer high performance, speed, and quality. An optical fiber communication system based on FTTH device ingress network using gigabit passive optical networks (GPONs) with fiber Bragg grating (FBG) and optical amplifier is designed and analyzed in this study. The developed design based on the FTTH device and FBG shows a low bit error rate (BER) for downstream and upstream configurations with an optical fiber length of 20 km. Downstream and upstream configurations achieve a Q-factor of 89.5 and 181.3, respectively. Achievable sensitivity of the developed system is −28 dBm, whil e the received signal based on OptiSystem is −25.59 dBm. FTTH with FBG will play a major role in the future and provide effective solutions for a wide variety of applications in network communication systems and data transmission rates.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.50
自引率
14.30%
发文量
0
审稿时长
12 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信