考虑任意类型震源的随钻测井单井声波成像波场模拟与分析的快速算法

IF 3 2区 地球科学 Q1 GEOCHEMISTRY & GEOPHYSICS
Geophysics Pub Date : 2023-11-06 DOI:10.1190/geo2023-0177.1
Jiaqi Xu, Hengshan Hu, Bo Han
{"title":"考虑任意类型震源的随钻测井单井声波成像波场模拟与分析的快速算法","authors":"Jiaqi Xu, Hengshan Hu, Bo Han","doi":"10.1190/geo2023-0177.1","DOIUrl":null,"url":null,"abstract":"Acoustic single-well imaging (SWI) of logging-while-drilling (LWD) is an advanced logging method in reservoir exploration, which uses reflected waves to detect the around-borehole geological structures and quickly determines the drilling direction for enhancing the drilling-encounter ratio and reducing the drilling risk. Forward acoustic modelling is a fundamental problem for SWI in LWD. Due to the complex structures, it is a challenge to simulate the wave propagation and investigate wavefield characteristics based on the forward model. Numerical modeling is a commonly used method for calculating wavefields, however it is too computationally expensive. In this study, we propose a fast method for calculating the full reflected pressure and displacement waves (i.e., P-P, SV-SV, SH-SH, and P-SV/SV-P) in SWI of LWD considering different types of sources including arcuate, monopole and dipole transmitters. The analytical algorithm is proposed by applying the reciprocity relation between the virtual force (displacement) sources located at the receiver position and the outside-borehole virtual forces which are equivalent to the reflections from the formation interfaces. Numerical experiments show that the analytical solutions agree well with the reference solutions from 3D finite-difference time-domain method, demonstrating the accuracy and high efficiency of the analytical method. Based on the analytical solutions, we find that LWD reflected waves are much more sensitive to the azimuth than those in the wireline case, showing that the availability of LWD is important for identifying the reflector azimuth. Furthermore, to enhance the reception efficiency of reflected waves, we present the optimized LWD parameters: For slow formations, we suggest using a dipole source with dominant excitation-frequency band being from 1 kHz to 3 kHz; For fast formations, a dipole with wider excitation-frequency band from 1 kHz to 5 kHz is recommended; For all formations, recording pressure signals shows much higher reception efficiency than the displacement signals.","PeriodicalId":55102,"journal":{"name":"Geophysics","volume":"307 1‐2","pages":"0"},"PeriodicalIF":3.0000,"publicationDate":"2023-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A fast algorithm for simulation and analysis of wavefields in acoustic single-well imaging of logging-while-drilling considering arbitrary types of sources\",\"authors\":\"Jiaqi Xu, Hengshan Hu, Bo Han\",\"doi\":\"10.1190/geo2023-0177.1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Acoustic single-well imaging (SWI) of logging-while-drilling (LWD) is an advanced logging method in reservoir exploration, which uses reflected waves to detect the around-borehole geological structures and quickly determines the drilling direction for enhancing the drilling-encounter ratio and reducing the drilling risk. Forward acoustic modelling is a fundamental problem for SWI in LWD. Due to the complex structures, it is a challenge to simulate the wave propagation and investigate wavefield characteristics based on the forward model. Numerical modeling is a commonly used method for calculating wavefields, however it is too computationally expensive. In this study, we propose a fast method for calculating the full reflected pressure and displacement waves (i.e., P-P, SV-SV, SH-SH, and P-SV/SV-P) in SWI of LWD considering different types of sources including arcuate, monopole and dipole transmitters. The analytical algorithm is proposed by applying the reciprocity relation between the virtual force (displacement) sources located at the receiver position and the outside-borehole virtual forces which are equivalent to the reflections from the formation interfaces. Numerical experiments show that the analytical solutions agree well with the reference solutions from 3D finite-difference time-domain method, demonstrating the accuracy and high efficiency of the analytical method. Based on the analytical solutions, we find that LWD reflected waves are much more sensitive to the azimuth than those in the wireline case, showing that the availability of LWD is important for identifying the reflector azimuth. Furthermore, to enhance the reception efficiency of reflected waves, we present the optimized LWD parameters: For slow formations, we suggest using a dipole source with dominant excitation-frequency band being from 1 kHz to 3 kHz; For fast formations, a dipole with wider excitation-frequency band from 1 kHz to 5 kHz is recommended; For all formations, recording pressure signals shows much higher reception efficiency than the displacement signals.\",\"PeriodicalId\":55102,\"journal\":{\"name\":\"Geophysics\",\"volume\":\"307 1‐2\",\"pages\":\"0\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2023-11-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geophysics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1190/geo2023-0177.1\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geophysics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1190/geo2023-0177.1","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0

摘要

随钻测井单井声波成像(SWI)是一种先进的储层勘探测井方法,利用反射波探测井周地质构造,快速确定钻井方向,提高钻遇比,降低钻井风险。正演声学建模是LWD中SWI的一个基本问题。由于其结构复杂,基于正演模型模拟波的传播和研究波场特征是一项挑战。数值模拟是一种常用的波场计算方法,但其计算成本过高。在这项研究中,我们提出了一种快速计算LWD SWI中全反射压力波和位移波(即P-P、SV-SV、SH-SH和P-SV/SV-P)的方法,考虑了不同类型的源,包括弓形、单极和偶极发射机。利用位于接收位置的虚力(位移)源与等效于地层界面反射的井外虚力之间的互易关系,提出了解析算法。数值实验表明,解析解与三维时域有限差分法的参考解吻合较好,证明了解析方法的准确性和高效性。基于解析解,我们发现随钻反射波对方位角的敏感性远高于电缆情况下的方位角,这表明随钻的可用性对于识别反射面方位角很重要。此外,为了提高反射波的接收效率,我们提出了优化的随钻参数:对于慢速地层,我们建议使用主导激励频带为1 ~ 3 kHz的偶极子源;对于快速地层,推荐使用激励频带从1 kHz到5 kHz更宽的偶极子;对于所有地层,记录压力信号的接收效率都远高于记录位移信号。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A fast algorithm for simulation and analysis of wavefields in acoustic single-well imaging of logging-while-drilling considering arbitrary types of sources
Acoustic single-well imaging (SWI) of logging-while-drilling (LWD) is an advanced logging method in reservoir exploration, which uses reflected waves to detect the around-borehole geological structures and quickly determines the drilling direction for enhancing the drilling-encounter ratio and reducing the drilling risk. Forward acoustic modelling is a fundamental problem for SWI in LWD. Due to the complex structures, it is a challenge to simulate the wave propagation and investigate wavefield characteristics based on the forward model. Numerical modeling is a commonly used method for calculating wavefields, however it is too computationally expensive. In this study, we propose a fast method for calculating the full reflected pressure and displacement waves (i.e., P-P, SV-SV, SH-SH, and P-SV/SV-P) in SWI of LWD considering different types of sources including arcuate, monopole and dipole transmitters. The analytical algorithm is proposed by applying the reciprocity relation between the virtual force (displacement) sources located at the receiver position and the outside-borehole virtual forces which are equivalent to the reflections from the formation interfaces. Numerical experiments show that the analytical solutions agree well with the reference solutions from 3D finite-difference time-domain method, demonstrating the accuracy and high efficiency of the analytical method. Based on the analytical solutions, we find that LWD reflected waves are much more sensitive to the azimuth than those in the wireline case, showing that the availability of LWD is important for identifying the reflector azimuth. Furthermore, to enhance the reception efficiency of reflected waves, we present the optimized LWD parameters: For slow formations, we suggest using a dipole source with dominant excitation-frequency band being from 1 kHz to 3 kHz; For fast formations, a dipole with wider excitation-frequency band from 1 kHz to 5 kHz is recommended; For all formations, recording pressure signals shows much higher reception efficiency than the displacement signals.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Geophysics
Geophysics 地学-地球化学与地球物理
CiteScore
6.90
自引率
18.20%
发文量
354
审稿时长
3 months
期刊介绍: Geophysics, published by the Society of Exploration Geophysicists since 1936, is an archival journal encompassing all aspects of research, exploration, and education in applied geophysics. Geophysics articles, generally more than 275 per year in six issues, cover the entire spectrum of geophysical methods, including seismology, potential fields, electromagnetics, and borehole measurements. Geophysics, a bimonthly, provides theoretical and mathematical tools needed to reproduce depicted work, encouraging further development and research. Geophysics papers, drawn from industry and academia, undergo a rigorous peer-review process to validate the described methods and conclusions and ensure the highest editorial and production quality. Geophysics editors strongly encourage the use of real data, including actual case histories, to highlight current technology and tutorials to stimulate ideas. Some issues feature a section of solicited papers on a particular subject of current interest. Recent special sections focused on seismic anisotropy, subsalt exploration and development, and microseismic monitoring. The PDF format of each Geophysics paper is the official version of record.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信