用第一原理法研究 Ni2ZnAl 化合物

Tahsin ÖZER
{"title":"用第一原理法研究 Ni2ZnAl 化合物","authors":"Tahsin ÖZER","doi":"10.36306/konjes.1171749","DOIUrl":null,"url":null,"abstract":"In this study, ground state properties of Ni2ZnAl alloy in L21 phase from Heusler family were optimized. The calculated parameters are in harmony with the available literature data. Elastic constants were calculated using optimized parameters. The calculated elastic constants were found to meet the Born mechanical stability criteria. By using these constants, some mechanical and thermodynamic properties of the material such as elastic modulus, Vicker hardness, anisotropic nature, melting temperature were investigated in detail. Calculations showed that the Ni2ZnAl alloy is ductile, soft, and anisotropic. As such, it is a candidate material for applications that do not require hardness. The free energy, vibrational energy, entropy, and heat capacity of the Ni2ZnAl alloy were investigated using a semi- harmonic approach in the range of 0-800 K. All the total energy calculations were performed using the open-source Quantum Espresso software and ab-initio pseudopotential method based on the density functional theory (DFT) scheme within a generalized gradient approximation (GGA). According to the data obtained because of the study, Ni2ZnAl alloy is a potential candidate for industrial use.","PeriodicalId":17899,"journal":{"name":"Konya Journal of Engineering Sciences","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ni2ZnAl BİLEŞİĞİNİN İLK PRENSİPLER YÖNTEMİ İLE İNCELENMESİ\",\"authors\":\"Tahsin ÖZER\",\"doi\":\"10.36306/konjes.1171749\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this study, ground state properties of Ni2ZnAl alloy in L21 phase from Heusler family were optimized. The calculated parameters are in harmony with the available literature data. Elastic constants were calculated using optimized parameters. The calculated elastic constants were found to meet the Born mechanical stability criteria. By using these constants, some mechanical and thermodynamic properties of the material such as elastic modulus, Vicker hardness, anisotropic nature, melting temperature were investigated in detail. Calculations showed that the Ni2ZnAl alloy is ductile, soft, and anisotropic. As such, it is a candidate material for applications that do not require hardness. The free energy, vibrational energy, entropy, and heat capacity of the Ni2ZnAl alloy were investigated using a semi- harmonic approach in the range of 0-800 K. All the total energy calculations were performed using the open-source Quantum Espresso software and ab-initio pseudopotential method based on the density functional theory (DFT) scheme within a generalized gradient approximation (GGA). According to the data obtained because of the study, Ni2ZnAl alloy is a potential candidate for industrial use.\",\"PeriodicalId\":17899,\"journal\":{\"name\":\"Konya Journal of Engineering Sciences\",\"volume\":\"12 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Konya Journal of Engineering Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.36306/konjes.1171749\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Konya Journal of Engineering Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.36306/konjes.1171749","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本研究对Heusler族L21相Ni2ZnAl合金的基态性能进行了优化。计算参数与现有文献数据基本一致。利用优化后的参数计算弹性常数。计算得到的弹性常数满足Born力学稳定性准则。利用这些常数对材料的弹性模量、维氏硬度、各向异性、熔化温度等力学和热力学性能进行了详细的研究。计算表明,Ni2ZnAl合金具有延展性、柔软性和各向异性。因此,它是不需要硬度的应用的候选材料。采用半谐波法研究了Ni2ZnAl合金在0 ~ 800 K范围内的自由能、振动能、熵和热容。所有的总能量计算均使用开源的Quantum Espresso软件和基于广义梯度近似(GGA)的密度泛函理论(DFT)方案的ab-initio伪势方法进行。根据研究获得的数据,Ni2ZnAl合金具有潜在的工业应用前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Ni2ZnAl BİLEŞİĞİNİN İLK PRENSİPLER YÖNTEMİ İLE İNCELENMESİ
In this study, ground state properties of Ni2ZnAl alloy in L21 phase from Heusler family were optimized. The calculated parameters are in harmony with the available literature data. Elastic constants were calculated using optimized parameters. The calculated elastic constants were found to meet the Born mechanical stability criteria. By using these constants, some mechanical and thermodynamic properties of the material such as elastic modulus, Vicker hardness, anisotropic nature, melting temperature were investigated in detail. Calculations showed that the Ni2ZnAl alloy is ductile, soft, and anisotropic. As such, it is a candidate material for applications that do not require hardness. The free energy, vibrational energy, entropy, and heat capacity of the Ni2ZnAl alloy were investigated using a semi- harmonic approach in the range of 0-800 K. All the total energy calculations were performed using the open-source Quantum Espresso software and ab-initio pseudopotential method based on the density functional theory (DFT) scheme within a generalized gradient approximation (GGA). According to the data obtained because of the study, Ni2ZnAl alloy is a potential candidate for industrial use.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信