{"title":"4次的全p进代数数","authors":"Melissa Ault, Darrin Doud","doi":"10.1216/rmj.2023.53.335","DOIUrl":null,"url":null,"abstract":"We generalize work of Stacy (Open Book Ser. 4 (2020), 387–401). to obtain upper bounds independent of p for the minimal height of a totally p-adic algebraic number of degree 4. We also compute actual values of this minimal height for small primes p.","PeriodicalId":49591,"journal":{"name":"Rocky Mountain Journal of Mathematics","volume":"41 1","pages":"0"},"PeriodicalIF":0.7000,"publicationDate":"2023-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"TOTALLY p-ADIC ALGEBRAIC NUMBERS OF DEGREE 4\",\"authors\":\"Melissa Ault, Darrin Doud\",\"doi\":\"10.1216/rmj.2023.53.335\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We generalize work of Stacy (Open Book Ser. 4 (2020), 387–401). to obtain upper bounds independent of p for the minimal height of a totally p-adic algebraic number of degree 4. We also compute actual values of this minimal height for small primes p.\",\"PeriodicalId\":49591,\"journal\":{\"name\":\"Rocky Mountain Journal of Mathematics\",\"volume\":\"41 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2023-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Rocky Mountain Journal of Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1216/rmj.2023.53.335\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Rocky Mountain Journal of Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1216/rmj.2023.53.335","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
我们概括了Stacy (Open Book Ser. 4(2020), 387-401)的工作。求4次全p进代数数的最小高度与p无关的上界。我们还计算了小质数p的最小高度的实际值。
We generalize work of Stacy (Open Book Ser. 4 (2020), 387–401). to obtain upper bounds independent of p for the minimal height of a totally p-adic algebraic number of degree 4. We also compute actual values of this minimal height for small primes p.
期刊介绍:
Rocky Mountain Journal of Mathematics publishes both research and expository articles in mathematics, and particularly invites well-written survey articles.
The Rocky Mountain Journal of Mathematics endeavors to publish significant research papers and substantial expository/survey papers in a broad range of theoretical and applied areas of mathematics. For this reason the editorial board is broadly based and submissions are accepted in most areas of mathematics.
In addition, the journal publishes specialized conference proceedings.