使用支持向量机对燃油(BBM)直接现金补助(BLT)进行情感分析

Rizky Rahman Salam, Muhammad Fajri Jamil, Yusril Ibrahim, Rahmaddeni Rahmaddeni, Soni Soni, Herianto Herianto
{"title":"使用支持向量机对燃油(BBM)直接现金补助(BLT)进行情感分析","authors":"Rizky Rahman Salam, Muhammad Fajri Jamil, Yusril Ibrahim, Rahmaddeni Rahmaddeni, Soni Soni, Herianto Herianto","doi":"10.57152/malcom.v3i1.590","DOIUrl":null,"url":null,"abstract":"Bahan bakar minyak (BBM) merupakan salah satu kebutuhan pokok masyarakat. Namun, harga BBM yang tinggi dapat menyebabkan beban ekonomi bagi masyarakat yang tidak mampu. Dalam rangka mengatasi masalah ini, pemerintah telah menerapkan program Bantuan Langsung Tunai (BLT) sebagai bentuk bantuan bagi masyarakat yang mengalami ketidakseimbangan ekonomi. Tujuan dari penelitian ini adalah untuk menganalisis sentimen masyarakat terhadap program Bantuan Langsung Tunai (BLT) Bahan Bakar Minyak (BBM). Penelitian ini menggunakan teknik pengumpulan data scraping, yaitu mengambil data dari media sosial Instagram. Jumlah yang digunakan sebanyak 356 data. Proses klasifikasi yang digunakan berdasarkan model pembelajaran dari Support Vector Machine (SVM) dan evaluasi dengan confusion matrix. Dari hasil perhitungan, terlihat bahwa proses klasifikasi sentimen menggunakan metode SVM didapatkan tingkat accuracy 85,98%, rata-rata nilai precision 82,25%, nilai rata-rata recall 66,35%, dan nilai rata-rata f-measure 73,44%. Hasil yang diperoleh menunjukkan bahwa sentimen negatif lebih banyak daripada sentimen positif, dengan masing-masing persentase 78.61% dan 21.34%. Dari analisis sentimen yang dilakukan, ditemukan bahwa sentimen negatif adalah yang paling banyak muncul, hal ini menunjukkan bahwa masyarakat tidak puas dengan bantuan langsung tunai BBM. Sebagai respon terhadap sentimen negatif yang dominan, perlu diterapkan strategi untuk melakukan pemerataan bantuan langsung tunai dan pendata’an yang terstruktur agar tingkat kekecewaan masyarakat dapat diminimalisir.","PeriodicalId":499353,"journal":{"name":"MALCOM Indonesian Journal of Machine Learning and Computer Science","volume":"100 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Analisis Sentimen Terhadap Bantuan Langsung Tunai (BLT) Bahan Bakar Minyak (BBM) Menggunakan Support Vector Machine\",\"authors\":\"Rizky Rahman Salam, Muhammad Fajri Jamil, Yusril Ibrahim, Rahmaddeni Rahmaddeni, Soni Soni, Herianto Herianto\",\"doi\":\"10.57152/malcom.v3i1.590\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Bahan bakar minyak (BBM) merupakan salah satu kebutuhan pokok masyarakat. Namun, harga BBM yang tinggi dapat menyebabkan beban ekonomi bagi masyarakat yang tidak mampu. Dalam rangka mengatasi masalah ini, pemerintah telah menerapkan program Bantuan Langsung Tunai (BLT) sebagai bentuk bantuan bagi masyarakat yang mengalami ketidakseimbangan ekonomi. Tujuan dari penelitian ini adalah untuk menganalisis sentimen masyarakat terhadap program Bantuan Langsung Tunai (BLT) Bahan Bakar Minyak (BBM). Penelitian ini menggunakan teknik pengumpulan data scraping, yaitu mengambil data dari media sosial Instagram. Jumlah yang digunakan sebanyak 356 data. Proses klasifikasi yang digunakan berdasarkan model pembelajaran dari Support Vector Machine (SVM) dan evaluasi dengan confusion matrix. Dari hasil perhitungan, terlihat bahwa proses klasifikasi sentimen menggunakan metode SVM didapatkan tingkat accuracy 85,98%, rata-rata nilai precision 82,25%, nilai rata-rata recall 66,35%, dan nilai rata-rata f-measure 73,44%. Hasil yang diperoleh menunjukkan bahwa sentimen negatif lebih banyak daripada sentimen positif, dengan masing-masing persentase 78.61% dan 21.34%. Dari analisis sentimen yang dilakukan, ditemukan bahwa sentimen negatif adalah yang paling banyak muncul, hal ini menunjukkan bahwa masyarakat tidak puas dengan bantuan langsung tunai BBM. Sebagai respon terhadap sentimen negatif yang dominan, perlu diterapkan strategi untuk melakukan pemerataan bantuan langsung tunai dan pendata’an yang terstruktur agar tingkat kekecewaan masyarakat dapat diminimalisir.\",\"PeriodicalId\":499353,\"journal\":{\"name\":\"MALCOM Indonesian Journal of Machine Learning and Computer Science\",\"volume\":\"100 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-05-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"MALCOM Indonesian Journal of Machine Learning and Computer Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.57152/malcom.v3i1.590\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"MALCOM Indonesian Journal of Machine Learning and Computer Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.57152/malcom.v3i1.590","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

燃料是社会的基本需求之一。然而,高油价可能会给负担不起的社会带来经济负担。为了解决这个问题,政府实施了直接现金援助计划(BLT),作为对经济不平衡社会的一种援助形式。这项研究的目的是分析人们对原油(BLT)直接援助项目的看法。这项研究采用了一种数据采集技术,即从Instagram社交媒体上获取数据。总共使用了356个数据。基于基于web Vector Machine (SVM)学习模式和孔子矩阵评估的分类过程。从计算结果来看,用SVM方法对感情的分类过程获得了准确程度85.98%,precision值82.25%,平均召回值66.35%,f-measure平均值73.44%。结果表明消极情绪多于积极情绪,每个百分比为78.61%和21.34%。从所做的情绪分析中,人们发现消极情绪是最常见的,这表明人们对直接的汽油现金援助不满意。作为对主导负面情绪的回应,我们需要运用一种战略,将现金直接援助和结构化化的归档,将社会幻灭降到最低。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Analisis Sentimen Terhadap Bantuan Langsung Tunai (BLT) Bahan Bakar Minyak (BBM) Menggunakan Support Vector Machine
Bahan bakar minyak (BBM) merupakan salah satu kebutuhan pokok masyarakat. Namun, harga BBM yang tinggi dapat menyebabkan beban ekonomi bagi masyarakat yang tidak mampu. Dalam rangka mengatasi masalah ini, pemerintah telah menerapkan program Bantuan Langsung Tunai (BLT) sebagai bentuk bantuan bagi masyarakat yang mengalami ketidakseimbangan ekonomi. Tujuan dari penelitian ini adalah untuk menganalisis sentimen masyarakat terhadap program Bantuan Langsung Tunai (BLT) Bahan Bakar Minyak (BBM). Penelitian ini menggunakan teknik pengumpulan data scraping, yaitu mengambil data dari media sosial Instagram. Jumlah yang digunakan sebanyak 356 data. Proses klasifikasi yang digunakan berdasarkan model pembelajaran dari Support Vector Machine (SVM) dan evaluasi dengan confusion matrix. Dari hasil perhitungan, terlihat bahwa proses klasifikasi sentimen menggunakan metode SVM didapatkan tingkat accuracy 85,98%, rata-rata nilai precision 82,25%, nilai rata-rata recall 66,35%, dan nilai rata-rata f-measure 73,44%. Hasil yang diperoleh menunjukkan bahwa sentimen negatif lebih banyak daripada sentimen positif, dengan masing-masing persentase 78.61% dan 21.34%. Dari analisis sentimen yang dilakukan, ditemukan bahwa sentimen negatif adalah yang paling banyak muncul, hal ini menunjukkan bahwa masyarakat tidak puas dengan bantuan langsung tunai BBM. Sebagai respon terhadap sentimen negatif yang dominan, perlu diterapkan strategi untuk melakukan pemerataan bantuan langsung tunai dan pendata’an yang terstruktur agar tingkat kekecewaan masyarakat dapat diminimalisir.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信