有效元素位于中心的环的结构

Pub Date : 2023-01-01 DOI:10.11650/tjm/231103
Tai Keun Kwak, Yang Lee, Yeonsook Seo
{"title":"有效元素位于中心的环的结构","authors":"Tai Keun Kwak, Yang Lee, Yeonsook Seo","doi":"10.11650/tjm/231103","DOIUrl":null,"url":null,"abstract":"We study the structure of potent elements in matrix rings with same diagonals and polynomial rings, motivated by Jacobson's theorem of commutativity. A ring shall be said to be PC if every potent element is central. We investigate the structure of PC rings in relation to the commutativity of rings. It is proved that if $R$ is a PC ring of prime characteristic then the polynomial ring over $R$ is also a PC ring. Every periodic PC ring is shown to be commutative.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Structure of Rings Whose Potent Elements are Central\",\"authors\":\"Tai Keun Kwak, Yang Lee, Yeonsook Seo\",\"doi\":\"10.11650/tjm/231103\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study the structure of potent elements in matrix rings with same diagonals and polynomial rings, motivated by Jacobson's theorem of commutativity. A ring shall be said to be PC if every potent element is central. We investigate the structure of PC rings in relation to the commutativity of rings. It is proved that if $R$ is a PC ring of prime characteristic then the polynomial ring over $R$ is also a PC ring. Every periodic PC ring is shown to be commutative.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.11650/tjm/231103\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11650/tjm/231103","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

利用Jacobson交换定理,研究了具有相同对角线和多项式环的矩阵环中有效元的结构。如果每个有效元素都在中心,则称环为正环。我们研究了PC环的结构与环的交换性的关系。证明了如果$R$是一个素数特征的PC环,则$R$上的多项式环也是一个PC环。每个周期PC环被证明是可交换的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Structure of Rings Whose Potent Elements are Central
We study the structure of potent elements in matrix rings with same diagonals and polynomial rings, motivated by Jacobson's theorem of commutativity. A ring shall be said to be PC if every potent element is central. We investigate the structure of PC rings in relation to the commutativity of rings. It is proved that if $R$ is a PC ring of prime characteristic then the polynomial ring over $R$ is also a PC ring. Every periodic PC ring is shown to be commutative.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信