{"title":"磁化电子-正电子等离子体中弱非线性分数离子声波精细动力学研究","authors":"M. M. Abelazeem, Raghda A. M. Attia","doi":"10.1142/s0218348x23401977","DOIUrl":null,"url":null,"abstract":"This study employs three advanced computational and numerical techniques to solve the nonlinear fractional modified Korteweg–de Vries–Zakharov–Kuznetsov (mKdV–ZK) equation in magnetized plasma. The reductive perturbation approach is utilized to investigate the dynamics of various components, namely isothermal species, immobile background species, and warm adiabatic fluid, in magnetized plasma. Emphasis is placed on unraveling the asymmetrical propagation characteristics of nonlinear electrostatic waves. The model’s solutions encompass diverse types of solitons, including ion-acoustic, dust acoustic, and electron acoustic solitons. Analytical solutions are obtained using a variety of mathematical functions, such as exponents, trigonometry, and hyperbolas. Two- and three-dimensional density graphs illustrate the practical behavior of a single soliton. The primary objective of employing numerical schemes is to assess the accuracy of the derived solutions, and the outcomes demonstrate the efficacy of the analytical method in solving nonlinear mathematical and physical problems. Several techniques are employed to validate the consistency between calculated and estimated results, ensuring the study’s accuracy and reliability. Overall, this investigation underscores the effectiveness of numerical and analytical techniques in tackling complex mathematical models, offering a promising avenue for future research in the field. The findings carry significant implications for comprehending nonlinear phenomena in magnetized plasma and contribute to advancing the field.","PeriodicalId":55144,"journal":{"name":"Fractals-Complex Geometry Patterns and Scaling in Nature and Society","volume":"21 1","pages":"0"},"PeriodicalIF":3.3000,"publicationDate":"2023-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Investigation of the Elaborate Dynamics of Weakly Nonlinear Fractional Ion-Acoustic Waves in Magnetized Electron-Positron Plasma\",\"authors\":\"M. M. Abelazeem, Raghda A. M. Attia\",\"doi\":\"10.1142/s0218348x23401977\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study employs three advanced computational and numerical techniques to solve the nonlinear fractional modified Korteweg–de Vries–Zakharov–Kuznetsov (mKdV–ZK) equation in magnetized plasma. The reductive perturbation approach is utilized to investigate the dynamics of various components, namely isothermal species, immobile background species, and warm adiabatic fluid, in magnetized plasma. Emphasis is placed on unraveling the asymmetrical propagation characteristics of nonlinear electrostatic waves. The model’s solutions encompass diverse types of solitons, including ion-acoustic, dust acoustic, and electron acoustic solitons. Analytical solutions are obtained using a variety of mathematical functions, such as exponents, trigonometry, and hyperbolas. Two- and three-dimensional density graphs illustrate the practical behavior of a single soliton. The primary objective of employing numerical schemes is to assess the accuracy of the derived solutions, and the outcomes demonstrate the efficacy of the analytical method in solving nonlinear mathematical and physical problems. Several techniques are employed to validate the consistency between calculated and estimated results, ensuring the study’s accuracy and reliability. Overall, this investigation underscores the effectiveness of numerical and analytical techniques in tackling complex mathematical models, offering a promising avenue for future research in the field. The findings carry significant implications for comprehending nonlinear phenomena in magnetized plasma and contribute to advancing the field.\",\"PeriodicalId\":55144,\"journal\":{\"name\":\"Fractals-Complex Geometry Patterns and Scaling in Nature and Society\",\"volume\":\"21 1\",\"pages\":\"0\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2023-10-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fractals-Complex Geometry Patterns and Scaling in Nature and Society\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/s0218348x23401977\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fractals-Complex Geometry Patterns and Scaling in Nature and Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s0218348x23401977","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
Investigation of the Elaborate Dynamics of Weakly Nonlinear Fractional Ion-Acoustic Waves in Magnetized Electron-Positron Plasma
This study employs three advanced computational and numerical techniques to solve the nonlinear fractional modified Korteweg–de Vries–Zakharov–Kuznetsov (mKdV–ZK) equation in magnetized plasma. The reductive perturbation approach is utilized to investigate the dynamics of various components, namely isothermal species, immobile background species, and warm adiabatic fluid, in magnetized plasma. Emphasis is placed on unraveling the asymmetrical propagation characteristics of nonlinear electrostatic waves. The model’s solutions encompass diverse types of solitons, including ion-acoustic, dust acoustic, and electron acoustic solitons. Analytical solutions are obtained using a variety of mathematical functions, such as exponents, trigonometry, and hyperbolas. Two- and three-dimensional density graphs illustrate the practical behavior of a single soliton. The primary objective of employing numerical schemes is to assess the accuracy of the derived solutions, and the outcomes demonstrate the efficacy of the analytical method in solving nonlinear mathematical and physical problems. Several techniques are employed to validate the consistency between calculated and estimated results, ensuring the study’s accuracy and reliability. Overall, this investigation underscores the effectiveness of numerical and analytical techniques in tackling complex mathematical models, offering a promising avenue for future research in the field. The findings carry significant implications for comprehending nonlinear phenomena in magnetized plasma and contribute to advancing the field.
期刊介绍:
The investigation of phenomena involving complex geometry, patterns and scaling has gone through a spectacular development and applications in the past decades. For this relatively short time, geometrical and/or temporal scaling have been shown to represent the common aspects of many processes occurring in an unusually diverse range of fields including physics, mathematics, biology, chemistry, economics, engineering and technology, and human behavior. As a rule, the complex nature of a phenomenon is manifested in the underlying intricate geometry which in most of the cases can be described in terms of objects with non-integer (fractal) dimension. In other cases, the distribution of events in time or various other quantities show specific scaling behavior, thus providing a better understanding of the relevant factors determining the given processes.
Using fractal geometry and scaling as a language in the related theoretical, numerical and experimental investigations, it has been possible to get a deeper insight into previously intractable problems. Among many others, a better understanding of growth phenomena, turbulence, iterative functions, colloidal aggregation, biological pattern formation, stock markets and inhomogeneous materials has emerged through the application of such concepts as scale invariance, self-affinity and multifractality.
The main challenge of the journal devoted exclusively to the above kinds of phenomena lies in its interdisciplinary nature; it is our commitment to bring together the most recent developments in these fields so that a fruitful interaction of various approaches and scientific views on complex spatial and temporal behaviors in both nature and society could take place.