Pamir Nag, Miloš Lj. Ranković, H. Christian Schewe, Jozef Rakovský, Leo Sala, Jaroslav Kočišek, Juraj Fedor
{"title":"液体微射流中探测电子诱导化学的实验装置","authors":"Pamir Nag, Miloš Lj. Ranković, H. Christian Schewe, Jozef Rakovský, Leo Sala, Jaroslav Kočišek, Juraj Fedor","doi":"10.1088/1361-6455/ad0205","DOIUrl":null,"url":null,"abstract":"Abstract We present an experimental setup for probing chemical changes in liquids induced by electron collisions. The setup utilizes a custom-designed electron gun that irradiates a liquid microjet with an electron beam of tunable energy. Products of the electron-induced reactions are analyzed ex-situ . The microjet system enables re-circulation of the liquid and thus multiple irradiation of the same sample. As a proof-of-principle experiment, an aqueous solution of TRIS (2-Amino-2-(hydroxymethyl)propane-1,3-diol) was irradiated by 300 eV electron beam. Optical UV–VIS analysis shows that the electron impact on the liquid surface leads to the production of OH radicals in the solution which are efficiently scavenged by TRIS.","PeriodicalId":16799,"journal":{"name":"Journal of Physics B","volume":"67 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Experimental setup for probing electron-induced chemistry in liquid micro-jets\",\"authors\":\"Pamir Nag, Miloš Lj. Ranković, H. Christian Schewe, Jozef Rakovský, Leo Sala, Jaroslav Kočišek, Juraj Fedor\",\"doi\":\"10.1088/1361-6455/ad0205\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract We present an experimental setup for probing chemical changes in liquids induced by electron collisions. The setup utilizes a custom-designed electron gun that irradiates a liquid microjet with an electron beam of tunable energy. Products of the electron-induced reactions are analyzed ex-situ . The microjet system enables re-circulation of the liquid and thus multiple irradiation of the same sample. As a proof-of-principle experiment, an aqueous solution of TRIS (2-Amino-2-(hydroxymethyl)propane-1,3-diol) was irradiated by 300 eV electron beam. Optical UV–VIS analysis shows that the electron impact on the liquid surface leads to the production of OH radicals in the solution which are efficiently scavenged by TRIS.\",\"PeriodicalId\":16799,\"journal\":{\"name\":\"Journal of Physics B\",\"volume\":\"67 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-10-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Physics B\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1088/1361-6455/ad0205\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physics B","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/1361-6455/ad0205","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Experimental setup for probing electron-induced chemistry in liquid micro-jets
Abstract We present an experimental setup for probing chemical changes in liquids induced by electron collisions. The setup utilizes a custom-designed electron gun that irradiates a liquid microjet with an electron beam of tunable energy. Products of the electron-induced reactions are analyzed ex-situ . The microjet system enables re-circulation of the liquid and thus multiple irradiation of the same sample. As a proof-of-principle experiment, an aqueous solution of TRIS (2-Amino-2-(hydroxymethyl)propane-1,3-diol) was irradiated by 300 eV electron beam. Optical UV–VIS analysis shows that the electron impact on the liquid surface leads to the production of OH radicals in the solution which are efficiently scavenged by TRIS.