{"title":"横向各向同性材料点接触冲击弹流润滑分析","authors":"Linh Thi Phuong Nguyen, Wang-Long Li","doi":"10.1115/1.4063496","DOIUrl":null,"url":null,"abstract":"Abstract In the traditional elastohydrodynamic lubrication (EHL) field, surface elastic deformation is usually determined using an elastic half-space model for isotropic materials. However, this theory may be inefficient when applied to point contact problems involving inherently anisotropic materials, such as transversely isotropic (TI) materials. Accordingly, the present study proposes a method for solving the EHL point contact problem between a rigid ball and a TI substrate under impact loading using a direct-solving numerical method, in which the mechanical properties of the TI material are expressed in the form of a stiffness matrix. For comparison purposes, the TI material is also approximated as an isotropic material using Turner’s approximation method based on the equivalent modulus property of the material. It is found that the direct-solving method outperforms Turner’s approximation in interpreting the mechanical properties of the TI substrate. In addition, it is shown that the initial velocity of the rigid ball and the stiffness of the TI material (i.e., the transverse elastic modulus, longitudinal modulus, and shear modulus) have significant effects on the load, impact velocity, and acceleration of the ball; central pressure and film thickness of the lubricant; and deformation and von Mises stress of the TI substrate, during the impact process. Overall, the results show that the proposed EHL model provides a useful tool for solving impact-EHL problems involving TI materials.","PeriodicalId":17586,"journal":{"name":"Journal of Tribology-transactions of The Asme","volume":null,"pages":null},"PeriodicalIF":2.2000,"publicationDate":"2023-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Impact elastohydrodynamic lubrication analysis of transversely isotropic materials in point contact\",\"authors\":\"Linh Thi Phuong Nguyen, Wang-Long Li\",\"doi\":\"10.1115/1.4063496\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract In the traditional elastohydrodynamic lubrication (EHL) field, surface elastic deformation is usually determined using an elastic half-space model for isotropic materials. However, this theory may be inefficient when applied to point contact problems involving inherently anisotropic materials, such as transversely isotropic (TI) materials. Accordingly, the present study proposes a method for solving the EHL point contact problem between a rigid ball and a TI substrate under impact loading using a direct-solving numerical method, in which the mechanical properties of the TI material are expressed in the form of a stiffness matrix. For comparison purposes, the TI material is also approximated as an isotropic material using Turner’s approximation method based on the equivalent modulus property of the material. It is found that the direct-solving method outperforms Turner’s approximation in interpreting the mechanical properties of the TI substrate. In addition, it is shown that the initial velocity of the rigid ball and the stiffness of the TI material (i.e., the transverse elastic modulus, longitudinal modulus, and shear modulus) have significant effects on the load, impact velocity, and acceleration of the ball; central pressure and film thickness of the lubricant; and deformation and von Mises stress of the TI substrate, during the impact process. Overall, the results show that the proposed EHL model provides a useful tool for solving impact-EHL problems involving TI materials.\",\"PeriodicalId\":17586,\"journal\":{\"name\":\"Journal of Tribology-transactions of The Asme\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2023-10-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Tribology-transactions of The Asme\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/1.4063496\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Tribology-transactions of The Asme","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/1.4063496","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
Impact elastohydrodynamic lubrication analysis of transversely isotropic materials in point contact
Abstract In the traditional elastohydrodynamic lubrication (EHL) field, surface elastic deformation is usually determined using an elastic half-space model for isotropic materials. However, this theory may be inefficient when applied to point contact problems involving inherently anisotropic materials, such as transversely isotropic (TI) materials. Accordingly, the present study proposes a method for solving the EHL point contact problem between a rigid ball and a TI substrate under impact loading using a direct-solving numerical method, in which the mechanical properties of the TI material are expressed in the form of a stiffness matrix. For comparison purposes, the TI material is also approximated as an isotropic material using Turner’s approximation method based on the equivalent modulus property of the material. It is found that the direct-solving method outperforms Turner’s approximation in interpreting the mechanical properties of the TI substrate. In addition, it is shown that the initial velocity of the rigid ball and the stiffness of the TI material (i.e., the transverse elastic modulus, longitudinal modulus, and shear modulus) have significant effects on the load, impact velocity, and acceleration of the ball; central pressure and film thickness of the lubricant; and deformation and von Mises stress of the TI substrate, during the impact process. Overall, the results show that the proposed EHL model provides a useful tool for solving impact-EHL problems involving TI materials.
期刊介绍:
The Journal of Tribology publishes over 100 outstanding technical articles of permanent interest to the tribology community annually and attracts articles by tribologists from around the world. The journal features a mix of experimental, numerical, and theoretical articles dealing with all aspects of the field. In addition to being of interest to engineers and other scientists doing research in the field, the Journal is also of great importance to engineers who design or use mechanical components such as bearings, gears, seals, magnetic recording heads and disks, or prosthetic joints, or who are involved with manufacturing processes.
Scope: Friction and wear; Fluid film lubrication; Elastohydrodynamic lubrication; Surface properties and characterization; Contact mechanics; Magnetic recordings; Tribological systems; Seals; Bearing design and technology; Gears; Metalworking; Lubricants; Artificial joints