更高的Kazhdan预测,$\ell_2$-Betti数和Baum-Connes猜想

IF 0.7 2区 数学 Q2 MATHEMATICS
Kang Li, Piotr W. Nowak, Sanaz Pooya
{"title":"更高的Kazhdan预测,$\\ell_2$-Betti数和Baum-Connes猜想","authors":"Kang Li, Piotr W. Nowak, Sanaz Pooya","doi":"10.4171/jncg/529","DOIUrl":null,"url":null,"abstract":"We introduce higher-dimensional analogs of Kazhdan projections in matrix algebras over group $C^\\*$-algebras and Roe algebras. These projections are constructed in the framework of cohomology with coefficients in unitary representations and in certain cases give rise to non-trivial $K$-theory classes. We apply the higher Kazhdan projections to establish a relation between $\\ell\\_2$-Betti numbers of a group and surjectivity of different Baum–Connes type assembly maps.","PeriodicalId":54780,"journal":{"name":"Journal of Noncommutative Geometry","volume":"26 1","pages":"0"},"PeriodicalIF":0.7000,"publicationDate":"2023-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Higher Kazhdan projections, $\\\\ell_2$-Betti numbers and Baum–Connes conjectures\",\"authors\":\"Kang Li, Piotr W. Nowak, Sanaz Pooya\",\"doi\":\"10.4171/jncg/529\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We introduce higher-dimensional analogs of Kazhdan projections in matrix algebras over group $C^\\\\*$-algebras and Roe algebras. These projections are constructed in the framework of cohomology with coefficients in unitary representations and in certain cases give rise to non-trivial $K$-theory classes. We apply the higher Kazhdan projections to establish a relation between $\\\\ell\\\\_2$-Betti numbers of a group and surjectivity of different Baum–Connes type assembly maps.\",\"PeriodicalId\":54780,\"journal\":{\"name\":\"Journal of Noncommutative Geometry\",\"volume\":\"26 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2023-10-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Noncommutative Geometry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4171/jncg/529\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Noncommutative Geometry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4171/jncg/529","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们在群C^\*$-代数和Roe代数上引入了矩阵代数中Kazhdan投影的高维类似。这些投影是在酉表示中带系数的上同调的框架中构造的,在某些情况下产生了非平凡的K -理论类。利用高哈兹丹投影,建立了群的$\ well \_2$-Betti数与不同Baum-Connes型集合映射的满性之间的关系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Higher Kazhdan projections, $\ell_2$-Betti numbers and Baum–Connes conjectures
We introduce higher-dimensional analogs of Kazhdan projections in matrix algebras over group $C^\*$-algebras and Roe algebras. These projections are constructed in the framework of cohomology with coefficients in unitary representations and in certain cases give rise to non-trivial $K$-theory classes. We apply the higher Kazhdan projections to establish a relation between $\ell\_2$-Betti numbers of a group and surjectivity of different Baum–Connes type assembly maps.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.60
自引率
11.10%
发文量
30
审稿时长
>12 weeks
期刊介绍: The Journal of Noncommutative Geometry covers the noncommutative world in all its aspects. It is devoted to publication of research articles which represent major advances in the area of noncommutative geometry and its applications to other fields of mathematics and theoretical physics. Topics covered include in particular: Hochschild and cyclic cohomology K-theory and index theory Measure theory and topology of noncommutative spaces, operator algebras Spectral geometry of noncommutative spaces Noncommutative algebraic geometry Hopf algebras and quantum groups Foliations, groupoids, stacks, gerbes Deformations and quantization Noncommutative spaces in number theory and arithmetic geometry Noncommutative geometry in physics: QFT, renormalization, gauge theory, string theory, gravity, mirror symmetry, solid state physics, statistical mechanics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信