汤普森集团的适应性问题$F$:最先进的

IF 0.1 Q4 MATHEMATICS
Guba, Victor
{"title":"汤普森集团的适应性问题$F$:最先进的","authors":"Guba, Victor","doi":"10.46298/jgcc.2023.15.1.11315","DOIUrl":null,"url":null,"abstract":"This is a survey of our recent results on the amenability problem for Thompson's group $F$. They mostly concern esimating the density of finite subgraphs in Cayley graphs of $F$ for various systems of generators, and also equations in the group ring of $F$. We also discuss possible approaches to solve the problem in both directions.","PeriodicalId":41862,"journal":{"name":"Groups Complexity Cryptology","volume":"17 1","pages":"0"},"PeriodicalIF":0.1000,"publicationDate":"2023-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Amenability problem for Thompson's group $F$: state of the art\",\"authors\":\"Guba, Victor\",\"doi\":\"10.46298/jgcc.2023.15.1.11315\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This is a survey of our recent results on the amenability problem for Thompson's group $F$. They mostly concern esimating the density of finite subgraphs in Cayley graphs of $F$ for various systems of generators, and also equations in the group ring of $F$. We also discuss possible approaches to solve the problem in both directions.\",\"PeriodicalId\":41862,\"journal\":{\"name\":\"Groups Complexity Cryptology\",\"volume\":\"17 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.1000,\"publicationDate\":\"2023-10-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Groups Complexity Cryptology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.46298/jgcc.2023.15.1.11315\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Groups Complexity Cryptology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.46298/jgcc.2023.15.1.11315","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

这是我们最近对汤普森组$F$的适应性问题的调查结果。它们主要涉及估计F$的Cayley图中的有限子图的密度,以及F$群环中的方程。我们还讨论了从两个方向解决问题的可能方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Amenability problem for Thompson's group $F$: state of the art
This is a survey of our recent results on the amenability problem for Thompson's group $F$. They mostly concern esimating the density of finite subgraphs in Cayley graphs of $F$ for various systems of generators, and also equations in the group ring of $F$. We also discuss possible approaches to solve the problem in both directions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.10
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信