Linh X. Nong, Oanh Thi Kim Nguyen
{"title":"光催化降解四环素类抗生素的ZnO/NiO/g-C3N4纳米复合材料的合成","authors":"Linh X. Nong, Oanh Thi Kim Nguyen","doi":"10.9767/bcrec.20039","DOIUrl":null,"url":null,"abstract":"In this study, an approach was utilized to improve the photocatalytic efficacy of g-C3N4 by creating a composite photocatalyst through co-precipitation. This process involved incorporating NiO and ZnO into the structure, resulting in enhanced photocatalytic activity. The Scanning Electron Microscopy (SEM) showcases interesting aggregation behavior, revealing extensive arrays of ZnO/NiO/g-C3N4 particles. Ultraviolet–Visible Diffuse Reflectance Spectroscopy (UV-Vis DRS) confirms the composite's strong light absorption, especially in the visible spectrum. X-ray diffraction (XRD) analysis provides conclusive evidence of successful material synthesis. The degradation of tetracycline antibiotics under visible light exposure demonstrates an impressive photochemical degradation efficiency of 78.43%. Additionally, the composite exhibits impressive cycles of reuse, retaining its high photocatalytic activity even after four reaction cycles. This performance surpasses that of comparison samples. The synergistic integration of NiO and g-C3N4 within ZnO proves to be crucial in enhancing photocatalytic activity by enhancing electron-hole separation and mitigating recombination processes. This composite photocatalyst shows a wide potential for efficiently eliminating tetracycline antibiotics from water systems. Copyright © 2023 by Authors, Published by BCREC Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0).","PeriodicalId":9329,"journal":{"name":"Bulletin of Chemical Reaction Engineering & Catalysis","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Synthesis of ZnO/NiO/g-C3N4 Nanocomposite Materials for Photocatalytic Degradation of Tetracycline Antibiotic\",\"authors\":\"Linh X. Nong, Oanh Thi Kim Nguyen\",\"doi\":\"10.9767/bcrec.20039\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this study, an approach was utilized to improve the photocatalytic efficacy of g-C3N4 by creating a composite photocatalyst through co-precipitation. This process involved incorporating NiO and ZnO into the structure, resulting in enhanced photocatalytic activity. The Scanning Electron Microscopy (SEM) showcases interesting aggregation behavior, revealing extensive arrays of ZnO/NiO/g-C3N4 particles. Ultraviolet–Visible Diffuse Reflectance Spectroscopy (UV-Vis DRS) confirms the composite's strong light absorption, especially in the visible spectrum. X-ray diffraction (XRD) analysis provides conclusive evidence of successful material synthesis. The degradation of tetracycline antibiotics under visible light exposure demonstrates an impressive photochemical degradation efficiency of 78.43%. Additionally, the composite exhibits impressive cycles of reuse, retaining its high photocatalytic activity even after four reaction cycles. This performance surpasses that of comparison samples. The synergistic integration of NiO and g-C3N4 within ZnO proves to be crucial in enhancing photocatalytic activity by enhancing electron-hole separation and mitigating recombination processes. This composite photocatalyst shows a wide potential for efficiently eliminating tetracycline antibiotics from water systems. Copyright © 2023 by Authors, Published by BCREC Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0).\",\"PeriodicalId\":9329,\"journal\":{\"name\":\"Bulletin of Chemical Reaction Engineering & Catalysis\",\"volume\":\"7 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-10-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of Chemical Reaction Engineering & Catalysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.9767/bcrec.20039\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of Chemical Reaction Engineering & Catalysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.9767/bcrec.20039","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Synthesis of ZnO/NiO/g-C3N4 Nanocomposite Materials for Photocatalytic Degradation of Tetracycline Antibiotic
In this study, an approach was utilized to improve the photocatalytic efficacy of g-C3N4 by creating a composite photocatalyst through co-precipitation. This process involved incorporating NiO and ZnO into the structure, resulting in enhanced photocatalytic activity. The Scanning Electron Microscopy (SEM) showcases interesting aggregation behavior, revealing extensive arrays of ZnO/NiO/g-C3N4 particles. Ultraviolet–Visible Diffuse Reflectance Spectroscopy (UV-Vis DRS) confirms the composite's strong light absorption, especially in the visible spectrum. X-ray diffraction (XRD) analysis provides conclusive evidence of successful material synthesis. The degradation of tetracycline antibiotics under visible light exposure demonstrates an impressive photochemical degradation efficiency of 78.43%. Additionally, the composite exhibits impressive cycles of reuse, retaining its high photocatalytic activity even after four reaction cycles. This performance surpasses that of comparison samples. The synergistic integration of NiO and g-C3N4 within ZnO proves to be crucial in enhancing photocatalytic activity by enhancing electron-hole separation and mitigating recombination processes. This composite photocatalyst shows a wide potential for efficiently eliminating tetracycline antibiotics from water systems. Copyright © 2023 by Authors, Published by BCREC Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0).