Damir Vandic , Lennart J. Nederstigt , Flavius Frasincar , Uzay Kaymak , Enzo Ido
{"title":"一个使用分面导航和用户偏好排序的近似产品搜索框架","authors":"Damir Vandic , Lennart J. Nederstigt , Flavius Frasincar , Uzay Kaymak , Enzo Ido","doi":"10.1016/j.datak.2023.102241","DOIUrl":null,"url":null,"abstract":"<div><p>One of the problems that e-commerce users face is that the desired products are sometimes not available and Web shops fail to provide similar products due to their exclusive reliance on Boolean faceted search. User preferences are also often not taken into account. In order to address these problems, we present a novel framework specifically geared towards approximate faceted search within the product catalog of a Web shop. It is based on adaptations to the p-norm extended Boolean model, to account for the domain-specific characteristics of faceted search in an e-commerce environment. These e-commerce specific characteristics are, for example, the use of quantitative properties and the presence of user preferences. Our approach explores the concept of facet similarity functions in order to better match products to queries. In addition, the user preferences are used to assign importance weights to the query terms. Using a large-scale experimental setup based on real-world data, we conclude that the proposed algorithm outperforms the considered benchmark algorithms. Last, we have performed a user-based study in which we found that users who use our approach find more relevant products with less effort.</p></div>","PeriodicalId":55184,"journal":{"name":"Data & Knowledge Engineering","volume":"149 ","pages":"Article 102241"},"PeriodicalIF":2.7000,"publicationDate":"2023-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A framework for approximate product search using faceted navigation and user preference ranking\",\"authors\":\"Damir Vandic , Lennart J. Nederstigt , Flavius Frasincar , Uzay Kaymak , Enzo Ido\",\"doi\":\"10.1016/j.datak.2023.102241\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>One of the problems that e-commerce users face is that the desired products are sometimes not available and Web shops fail to provide similar products due to their exclusive reliance on Boolean faceted search. User preferences are also often not taken into account. In order to address these problems, we present a novel framework specifically geared towards approximate faceted search within the product catalog of a Web shop. It is based on adaptations to the p-norm extended Boolean model, to account for the domain-specific characteristics of faceted search in an e-commerce environment. These e-commerce specific characteristics are, for example, the use of quantitative properties and the presence of user preferences. Our approach explores the concept of facet similarity functions in order to better match products to queries. In addition, the user preferences are used to assign importance weights to the query terms. Using a large-scale experimental setup based on real-world data, we conclude that the proposed algorithm outperforms the considered benchmark algorithms. Last, we have performed a user-based study in which we found that users who use our approach find more relevant products with less effort.</p></div>\",\"PeriodicalId\":55184,\"journal\":{\"name\":\"Data & Knowledge Engineering\",\"volume\":\"149 \",\"pages\":\"Article 102241\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2023-11-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Data & Knowledge Engineering\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0169023X23001015\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Data & Knowledge Engineering","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0169023X23001015","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
A framework for approximate product search using faceted navigation and user preference ranking
One of the problems that e-commerce users face is that the desired products are sometimes not available and Web shops fail to provide similar products due to their exclusive reliance on Boolean faceted search. User preferences are also often not taken into account. In order to address these problems, we present a novel framework specifically geared towards approximate faceted search within the product catalog of a Web shop. It is based on adaptations to the p-norm extended Boolean model, to account for the domain-specific characteristics of faceted search in an e-commerce environment. These e-commerce specific characteristics are, for example, the use of quantitative properties and the presence of user preferences. Our approach explores the concept of facet similarity functions in order to better match products to queries. In addition, the user preferences are used to assign importance weights to the query terms. Using a large-scale experimental setup based on real-world data, we conclude that the proposed algorithm outperforms the considered benchmark algorithms. Last, we have performed a user-based study in which we found that users who use our approach find more relevant products with less effort.
期刊介绍:
Data & Knowledge Engineering (DKE) stimulates the exchange of ideas and interaction between these two related fields of interest. DKE reaches a world-wide audience of researchers, designers, managers and users. The major aim of the journal is to identify, investigate and analyze the underlying principles in the design and effective use of these systems.