{"title":"不完全响应函数在函数响应回归中的线性算子约束检验","authors":"Yeonjoo Park, Kyunghee Han, Douglas G. Simpson","doi":"10.1214/23-ejs2177","DOIUrl":null,"url":null,"abstract":"Hypothesis testing procedures are developed to assess linear operator constraints in function-on-scalar regression when incomplete functional responses are observed. The approach enables statistical inferences about the shape and other aspects of the functional regression coefficients within a unified framework encompassing three incomplete sampling scenarios; (i) partially observed response functions as curve segments over random sub-intervals of the domain, (ii) discretely observed functional responses with additive measurement errors, and (iii) the composition of former two scenarios, where partially observed response segments are observed discretely with measurement error. The latter scenario has been little explored to date, although such structured data is increasingly common in applications. For statistical inference, deviations from the constraint space are measured via integrated L2-distance between estimates from the constrained and unconstrained model spaces. Large sample properties of the proposed test procedure are established, including the consistency, asymptotic distribution, and local power of the test statistic. The finite sample power and level of the proposed test are investigated in a simulation study covering a variety of scenarios. The proposed methodologies are illustrated by applications to U.S. obesity prevalence data, analyzing the functional shape of its trends over time, and motion analysis in a study of automotive ergonomics.","PeriodicalId":49272,"journal":{"name":"Electronic Journal of Statistics","volume":"12 1","pages":"0"},"PeriodicalIF":1.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Testing linear operator constraints in functional response regression with incomplete response functions\",\"authors\":\"Yeonjoo Park, Kyunghee Han, Douglas G. Simpson\",\"doi\":\"10.1214/23-ejs2177\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Hypothesis testing procedures are developed to assess linear operator constraints in function-on-scalar regression when incomplete functional responses are observed. The approach enables statistical inferences about the shape and other aspects of the functional regression coefficients within a unified framework encompassing three incomplete sampling scenarios; (i) partially observed response functions as curve segments over random sub-intervals of the domain, (ii) discretely observed functional responses with additive measurement errors, and (iii) the composition of former two scenarios, where partially observed response segments are observed discretely with measurement error. The latter scenario has been little explored to date, although such structured data is increasingly common in applications. For statistical inference, deviations from the constraint space are measured via integrated L2-distance between estimates from the constrained and unconstrained model spaces. Large sample properties of the proposed test procedure are established, including the consistency, asymptotic distribution, and local power of the test statistic. The finite sample power and level of the proposed test are investigated in a simulation study covering a variety of scenarios. The proposed methodologies are illustrated by applications to U.S. obesity prevalence data, analyzing the functional shape of its trends over time, and motion analysis in a study of automotive ergonomics.\",\"PeriodicalId\":49272,\"journal\":{\"name\":\"Electronic Journal of Statistics\",\"volume\":\"12 1\",\"pages\":\"0\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Electronic Journal of Statistics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1214/23-ejs2177\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronic Journal of Statistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1214/23-ejs2177","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
Testing linear operator constraints in functional response regression with incomplete response functions
Hypothesis testing procedures are developed to assess linear operator constraints in function-on-scalar regression when incomplete functional responses are observed. The approach enables statistical inferences about the shape and other aspects of the functional regression coefficients within a unified framework encompassing three incomplete sampling scenarios; (i) partially observed response functions as curve segments over random sub-intervals of the domain, (ii) discretely observed functional responses with additive measurement errors, and (iii) the composition of former two scenarios, where partially observed response segments are observed discretely with measurement error. The latter scenario has been little explored to date, although such structured data is increasingly common in applications. For statistical inference, deviations from the constraint space are measured via integrated L2-distance between estimates from the constrained and unconstrained model spaces. Large sample properties of the proposed test procedure are established, including the consistency, asymptotic distribution, and local power of the test statistic. The finite sample power and level of the proposed test are investigated in a simulation study covering a variety of scenarios. The proposed methodologies are illustrated by applications to U.S. obesity prevalence data, analyzing the functional shape of its trends over time, and motion analysis in a study of automotive ergonomics.
期刊介绍:
The Electronic Journal of Statistics (EJS) publishes research articles and short notes on theoretical, computational and applied statistics. The journal is open access. Articles are refereed and are held to the same standard as articles in other IMS journals. Articles become publicly available shortly after they are accepted.