目标 PCA:迁移学习大维度面板数据

IF 9.9 3区 经济学 Q1 ECONOMICS
Junting Duan , Markus Pelger , Ruoxuan Xiong
{"title":"目标 PCA:迁移学习大维度面板数据","authors":"Junting Duan ,&nbsp;Markus Pelger ,&nbsp;Ruoxuan Xiong","doi":"10.1016/j.jeconom.2023.105521","DOIUrl":null,"url":null,"abstract":"<div><div><span>This paper develops a novel method to estimate a latent factor model for a large target panel with missing observations by optimally using the information from auxiliary<span> panel data sets. We refer to our estimator as target-PCA. Transfer learning from auxiliary panel data allows us to deal with a large fraction of missing observations and weak signals in the target panel. We show that our estimator is more efficient and can consistently estimate weak factors, which are not identifiable with conventional methods. We provide the asymptotic inferential theory for target-PCA under very general assumptions on the approximate factor model and missing patterns. In an empirical study of imputing data in a mixed-frequency </span></span>macroeconomic panel, we demonstrate that target-PCA significantly outperforms all benchmark methods.</div></div>","PeriodicalId":15629,"journal":{"name":"Journal of Econometrics","volume":"244 2","pages":"Article 105521"},"PeriodicalIF":9.9000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Target PCA: Transfer learning large dimensional panel data\",\"authors\":\"Junting Duan ,&nbsp;Markus Pelger ,&nbsp;Ruoxuan Xiong\",\"doi\":\"10.1016/j.jeconom.2023.105521\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div><span>This paper develops a novel method to estimate a latent factor model for a large target panel with missing observations by optimally using the information from auxiliary<span> panel data sets. We refer to our estimator as target-PCA. Transfer learning from auxiliary panel data allows us to deal with a large fraction of missing observations and weak signals in the target panel. We show that our estimator is more efficient and can consistently estimate weak factors, which are not identifiable with conventional methods. We provide the asymptotic inferential theory for target-PCA under very general assumptions on the approximate factor model and missing patterns. In an empirical study of imputing data in a mixed-frequency </span></span>macroeconomic panel, we demonstrate that target-PCA significantly outperforms all benchmark methods.</div></div>\",\"PeriodicalId\":15629,\"journal\":{\"name\":\"Journal of Econometrics\",\"volume\":\"244 2\",\"pages\":\"Article 105521\"},\"PeriodicalIF\":9.9000,\"publicationDate\":\"2024-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Econometrics\",\"FirstCategoryId\":\"96\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0304407623002373\",\"RegionNum\":3,\"RegionCategory\":\"经济学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ECONOMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Econometrics","FirstCategoryId":"96","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0304407623002373","RegionNum":3,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 0

摘要

本文开发了一种新方法,通过优化利用辅助面板数据集的信息,为具有缺失观测数据的大型目标面板估计潜因模型。我们将这种估计方法称为目标-PCA。通过从辅助面板数据中转移学习,我们可以处理目标面板中的大量缺失观测数据和微弱信号。我们的研究表明,我们的估计方法更有效,能持续估计出传统方法无法识别的弱因子。在近似因子模型和缺失模式的一般假设下,我们提供了目标-PCA 的渐近推论理论。在对混合频率宏观经济面板数据的归因实证研究中,我们证明目标-PCA 明显优于所有基准方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Target PCA: Transfer learning large dimensional panel data
This paper develops a novel method to estimate a latent factor model for a large target panel with missing observations by optimally using the information from auxiliary panel data sets. We refer to our estimator as target-PCA. Transfer learning from auxiliary panel data allows us to deal with a large fraction of missing observations and weak signals in the target panel. We show that our estimator is more efficient and can consistently estimate weak factors, which are not identifiable with conventional methods. We provide the asymptotic inferential theory for target-PCA under very general assumptions on the approximate factor model and missing patterns. In an empirical study of imputing data in a mixed-frequency macroeconomic panel, we demonstrate that target-PCA significantly outperforms all benchmark methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Econometrics
Journal of Econometrics 社会科学-数学跨学科应用
CiteScore
8.60
自引率
1.60%
发文量
220
审稿时长
3-8 weeks
期刊介绍: The Journal of Econometrics serves as an outlet for important, high quality, new research in both theoretical and applied econometrics. The scope of the Journal includes papers dealing with identification, estimation, testing, decision, and prediction issues encountered in economic research. Classical Bayesian statistics, and machine learning methods, are decidedly within the range of the Journal''s interests. The Annals of Econometrics is a supplement to the Journal of Econometrics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信