一类一般微分方程边值问题的弱解

IF 0.8 3区 数学 Q2 MATHEMATICS
Vladimir Petrovich Burskii
{"title":"一类一般微分方程边值问题的弱解","authors":"Vladimir Petrovich Burskii","doi":"10.4213/im9403e","DOIUrl":null,"url":null,"abstract":"We study general settings of the Dirichlet problem, the Neumann problem, and other boundary value problems for equations and systems of the form $\\mathcal{L}^+ A\\mathcal{L}u=f$ with general (matrix, generally speaking) differential operation $\\mathcal{L}$ and some linear or non-linear operator $A$ acting in $L^k_2(\\Omega)$-spaces. For these boundary value problems, results on well-posedness, existence and uniqueness of a weak solution are obtained. As an operator $A$, we consider Nemytskii and integral operators. The case of operators involving lower-order derivatives is also studied.","PeriodicalId":54910,"journal":{"name":"Izvestiya Mathematics","volume":"40 1","pages":"0"},"PeriodicalIF":0.8000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On weak solutions of boundary value problems for some general differential equations\",\"authors\":\"Vladimir Petrovich Burskii\",\"doi\":\"10.4213/im9403e\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study general settings of the Dirichlet problem, the Neumann problem, and other boundary value problems for equations and systems of the form $\\\\mathcal{L}^+ A\\\\mathcal{L}u=f$ with general (matrix, generally speaking) differential operation $\\\\mathcal{L}$ and some linear or non-linear operator $A$ acting in $L^k_2(\\\\Omega)$-spaces. For these boundary value problems, results on well-posedness, existence and uniqueness of a weak solution are obtained. As an operator $A$, we consider Nemytskii and integral operators. The case of operators involving lower-order derivatives is also studied.\",\"PeriodicalId\":54910,\"journal\":{\"name\":\"Izvestiya Mathematics\",\"volume\":\"40 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Izvestiya Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4213/im9403e\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Izvestiya Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4213/im9403e","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们研究了$\mathcal{L}^+ A\mathcal{L}u=f$形式的方程和系统的Dirichlet问题、Neumann问题和其他边值问题的一般设置,这些边值问题具有一般的(一般来说是矩阵)微分运算$\mathcal{L}$和作用于$L^k_2(\Omega)$-空间的一些线性或非线性算子$A$。对于这些边值问题,得到了弱解的适定性、存在唯一性的结果。作为算子$A$,我们考虑Nemytskii算子和积分算子。还研究了涉及低阶导数的算子的情况。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On weak solutions of boundary value problems for some general differential equations
We study general settings of the Dirichlet problem, the Neumann problem, and other boundary value problems for equations and systems of the form $\mathcal{L}^+ A\mathcal{L}u=f$ with general (matrix, generally speaking) differential operation $\mathcal{L}$ and some linear or non-linear operator $A$ acting in $L^k_2(\Omega)$-spaces. For these boundary value problems, results on well-posedness, existence and uniqueness of a weak solution are obtained. As an operator $A$, we consider Nemytskii and integral operators. The case of operators involving lower-order derivatives is also studied.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Izvestiya Mathematics
Izvestiya Mathematics 数学-数学
CiteScore
1.30
自引率
0.00%
发文量
30
审稿时长
6-12 weeks
期刊介绍: The Russian original is rigorously refereed in Russia and the translations are carefully scrutinised and edited by the London Mathematical Society. This publication covers all fields of mathematics, but special attention is given to: Algebra; Mathematical logic; Number theory; Mathematical analysis; Geometry; Topology; Differential equations.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信