Banach空间上的算子-范数Trotter积公式

IF 0.8 3区 数学 Q2 MATHEMATICS
Valentin Anatol'evich Zagrebnov
{"title":"Banach空间上的算子-范数Trotter积公式","authors":"Valentin Anatol'evich Zagrebnov","doi":"10.4213/im9370e","DOIUrl":null,"url":null,"abstract":"Proof of the operator-norm convergent Trotter product formula on a Banach space is unexpectedly elaborate and a few of known results are based on assumption that at least one of the semigroups involved into this formula is holomorphic. Here we present an example of the operator-norm convergent Trotter product formula on a Banach space, where this condition is relaxed to demand that involved semigroups are contractive.","PeriodicalId":54910,"journal":{"name":"Izvestiya Mathematics","volume":"2 1","pages":"0"},"PeriodicalIF":0.8000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Operator-norm Trotter product formula on Banach spaces\",\"authors\":\"Valentin Anatol'evich Zagrebnov\",\"doi\":\"10.4213/im9370e\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Proof of the operator-norm convergent Trotter product formula on a Banach space is unexpectedly elaborate and a few of known results are based on assumption that at least one of the semigroups involved into this formula is holomorphic. Here we present an example of the operator-norm convergent Trotter product formula on a Banach space, where this condition is relaxed to demand that involved semigroups are contractive.\",\"PeriodicalId\":54910,\"journal\":{\"name\":\"Izvestiya Mathematics\",\"volume\":\"2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Izvestiya Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4213/im9370e\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Izvestiya Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4213/im9370e","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

Banach空间上算子-范数收敛的Trotter积公式的证明出人意料地复杂,一些已知的结果是基于该公式中至少有一个半群是全纯的假设。本文给出了Banach空间上算子-范数收敛的Trotter积公式的一个例子,其中这个条件被放宽到要求所涉及的半群是可压缩的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Operator-norm Trotter product formula on Banach spaces
Proof of the operator-norm convergent Trotter product formula on a Banach space is unexpectedly elaborate and a few of known results are based on assumption that at least one of the semigroups involved into this formula is holomorphic. Here we present an example of the operator-norm convergent Trotter product formula on a Banach space, where this condition is relaxed to demand that involved semigroups are contractive.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Izvestiya Mathematics
Izvestiya Mathematics 数学-数学
CiteScore
1.30
自引率
0.00%
发文量
30
审稿时长
6-12 weeks
期刊介绍: The Russian original is rigorously refereed in Russia and the translations are carefully scrutinised and edited by the London Mathematical Society. This publication covers all fields of mathematics, but special attention is given to: Algebra; Mathematical logic; Number theory; Mathematical analysis; Geometry; Topology; Differential equations.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信