{"title":"广义费米子层次模型中的重整化群变换","authors":"Mukadas Dmukhtasibovich Missarov, Dmitrii Airatovich Khajrullin","doi":"10.4213/im9371e","DOIUrl":null,"url":null,"abstract":"We consider a two-dimensional hierarchical lattice in which the vertices of a square represent an elementary cell. In the generalized hierarchical model, the distance between opposite vertices of a square differs from that between adjacent vertices and is a parameter of the new model. The Gaussian part of the Hamiltonian of the 4-component generalized fermionic hierarchical model is invariant under the block-spin renormalization group transformation. The transformation of the renormalization group in the space of coefficients, which specify the Grassmann-valued density of the free measure, is explicitly calculated as a homogeneous mapping of degree four in the two-dimensional projective space.","PeriodicalId":54910,"journal":{"name":"Izvestiya Mathematics","volume":"19 1","pages":"0"},"PeriodicalIF":0.8000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The renormalization group transformation in the generalized fermionic hierarchical model\",\"authors\":\"Mukadas Dmukhtasibovich Missarov, Dmitrii Airatovich Khajrullin\",\"doi\":\"10.4213/im9371e\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider a two-dimensional hierarchical lattice in which the vertices of a square represent an elementary cell. In the generalized hierarchical model, the distance between opposite vertices of a square differs from that between adjacent vertices and is a parameter of the new model. The Gaussian part of the Hamiltonian of the 4-component generalized fermionic hierarchical model is invariant under the block-spin renormalization group transformation. The transformation of the renormalization group in the space of coefficients, which specify the Grassmann-valued density of the free measure, is explicitly calculated as a homogeneous mapping of degree four in the two-dimensional projective space.\",\"PeriodicalId\":54910,\"journal\":{\"name\":\"Izvestiya Mathematics\",\"volume\":\"19 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Izvestiya Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4213/im9371e\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Izvestiya Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4213/im9371e","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
The renormalization group transformation in the generalized fermionic hierarchical model
We consider a two-dimensional hierarchical lattice in which the vertices of a square represent an elementary cell. In the generalized hierarchical model, the distance between opposite vertices of a square differs from that between adjacent vertices and is a parameter of the new model. The Gaussian part of the Hamiltonian of the 4-component generalized fermionic hierarchical model is invariant under the block-spin renormalization group transformation. The transformation of the renormalization group in the space of coefficients, which specify the Grassmann-valued density of the free measure, is explicitly calculated as a homogeneous mapping of degree four in the two-dimensional projective space.
期刊介绍:
The Russian original is rigorously refereed in Russia and the translations are carefully scrutinised and edited by the London Mathematical Society. This publication covers all fields of mathematics, but special attention is given to:
Algebra;
Mathematical logic;
Number theory;
Mathematical analysis;
Geometry;
Topology;
Differential equations.