由$-2曲线和恰好一条$-3曲线组成的加权对偶图的分类

IF 0.8 3区 数学 Q2 MATHEMATICS
Stephen S.-T. Yau, Qiwei Zhu, Huaiqing Zuo
{"title":"由$-2曲线和恰好一条$-3曲线组成的加权对偶图的分类","authors":"Stephen S.-T. Yau, Qiwei Zhu, Huaiqing Zuo","doi":"10.4213/im9337e","DOIUrl":null,"url":null,"abstract":"Let $(V, p)$ be a normal surface singularity. Let $\\pi\\colon (M, A)\\to (V, p)$ be a minimal good resolution of $V$. The weighted dual graphs $\\Gamma$ associated with $A$ completely describes the topology and differentiable structure of the embedding of $A$ in $M$. In this paper, we classify all the weighted dual graphs of $A=\\bigcup_{i=1}^n A_i$ such that one of the curves $A_i$ is a $-3$-curve, and all the remaining ones are $-2$-curves. This is a natural generalization of Artin's classification of rational triple points. Moreover, we compute the fundamental cycles of maximal graphs (see § 5) which can be used to determine whether the singularities are rational, minimally elliptic or weakly elliptic. We also give formulas for computing arithmetic and geometric genera of star-shaped graphs.","PeriodicalId":54910,"journal":{"name":"Izvestiya Mathematics","volume":"17 1","pages":"0"},"PeriodicalIF":0.8000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Classification of weighted dual graphs consisting of $-2$-curves and exactly one $-3$-curve\",\"authors\":\"Stephen S.-T. Yau, Qiwei Zhu, Huaiqing Zuo\",\"doi\":\"10.4213/im9337e\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let $(V, p)$ be a normal surface singularity. Let $\\\\pi\\\\colon (M, A)\\\\to (V, p)$ be a minimal good resolution of $V$. The weighted dual graphs $\\\\Gamma$ associated with $A$ completely describes the topology and differentiable structure of the embedding of $A$ in $M$. In this paper, we classify all the weighted dual graphs of $A=\\\\bigcup_{i=1}^n A_i$ such that one of the curves $A_i$ is a $-3$-curve, and all the remaining ones are $-2$-curves. This is a natural generalization of Artin's classification of rational triple points. Moreover, we compute the fundamental cycles of maximal graphs (see § 5) which can be used to determine whether the singularities are rational, minimally elliptic or weakly elliptic. We also give formulas for computing arithmetic and geometric genera of star-shaped graphs.\",\"PeriodicalId\":54910,\"journal\":{\"name\":\"Izvestiya Mathematics\",\"volume\":\"17 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Izvestiya Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4213/im9337e\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Izvestiya Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4213/im9337e","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

设$(V, p)$为法向曲面奇点。设$\pi\colon (M, A)\to (V, p)$为$V$的最小分辨率。与$A$相关的加权对偶图$\Gamma$完整地描述了$A$在$M$中嵌入的拓扑结构和可微结构。本文对$A=\bigcup_{i=1}^n A_i$的所有加权对偶图进行分类,使其中一条曲线$A_i$为$-3$ -曲线,其余的曲线均为$-2$ -曲线。这是对martin的有理三相点分类的自然推广。此外,我们计算了极大图的基本环(见§5),它可以用来确定奇点是有理的、最小椭圆的还是弱椭圆的。给出了星形图的算术计算公式和几何属。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Classification of weighted dual graphs consisting of $-2$-curves and exactly one $-3$-curve
Let $(V, p)$ be a normal surface singularity. Let $\pi\colon (M, A)\to (V, p)$ be a minimal good resolution of $V$. The weighted dual graphs $\Gamma$ associated with $A$ completely describes the topology and differentiable structure of the embedding of $A$ in $M$. In this paper, we classify all the weighted dual graphs of $A=\bigcup_{i=1}^n A_i$ such that one of the curves $A_i$ is a $-3$-curve, and all the remaining ones are $-2$-curves. This is a natural generalization of Artin's classification of rational triple points. Moreover, we compute the fundamental cycles of maximal graphs (see § 5) which can be used to determine whether the singularities are rational, minimally elliptic or weakly elliptic. We also give formulas for computing arithmetic and geometric genera of star-shaped graphs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Izvestiya Mathematics
Izvestiya Mathematics 数学-数学
CiteScore
1.30
自引率
0.00%
发文量
30
审稿时长
6-12 weeks
期刊介绍: The Russian original is rigorously refereed in Russia and the translations are carefully scrutinised and edited by the London Mathematical Society. This publication covers all fields of mathematics, but special attention is given to: Algebra; Mathematical logic; Number theory; Mathematical analysis; Geometry; Topology; Differential equations.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信