基于有理切比雪夫近似的分数阶Volterra积分方程的数值解

IF 0.9 4区 数学 Q2 MATHEMATICS
S. Deniz, F. Özger, Z. Ö. Özger, S. A. Mohiuddine, M. T. Ersoy
{"title":"基于有理切比雪夫近似的分数阶Volterra积分方程的数值解","authors":"S. Deniz, F. Özger, Z. Ö. Özger, S. A. Mohiuddine, M. T. Ersoy","doi":"10.18514/mmn.2023.4291","DOIUrl":null,"url":null,"abstract":". We aim to give the numerical method for solving the fractional Volterra integral equations of first and second kinds. We here use the techniques based upon rational Chebyshev functions and Riemann-Liouville fractional integrals. Some illustrative experiments with a view of estimating error and graphics are given in order to show the validity and applicability of the technique. Our experiments show that the new technique has high accuracy and is very efficient when compare to the other approaches existing in literature.","PeriodicalId":51252,"journal":{"name":"Miskolc Mathematical Notes","volume":"73 1","pages":"0"},"PeriodicalIF":0.9000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Numerical solution of fractional Volterra integral equations based on rational Chebyshev approximation\",\"authors\":\"S. Deniz, F. Özger, Z. Ö. Özger, S. A. Mohiuddine, M. T. Ersoy\",\"doi\":\"10.18514/mmn.2023.4291\",\"DOIUrl\":null,\"url\":null,\"abstract\":\". We aim to give the numerical method for solving the fractional Volterra integral equations of first and second kinds. We here use the techniques based upon rational Chebyshev functions and Riemann-Liouville fractional integrals. Some illustrative experiments with a view of estimating error and graphics are given in order to show the validity and applicability of the technique. Our experiments show that the new technique has high accuracy and is very efficient when compare to the other approaches existing in literature.\",\"PeriodicalId\":51252,\"journal\":{\"name\":\"Miskolc Mathematical Notes\",\"volume\":\"73 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Miskolc Mathematical Notes\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18514/mmn.2023.4291\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Miskolc Mathematical Notes","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18514/mmn.2023.4291","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。
Numerical solution of fractional Volterra integral equations based on rational Chebyshev approximation
. We aim to give the numerical method for solving the fractional Volterra integral equations of first and second kinds. We here use the techniques based upon rational Chebyshev functions and Riemann-Liouville fractional integrals. Some illustrative experiments with a view of estimating error and graphics are given in order to show the validity and applicability of the technique. Our experiments show that the new technique has high accuracy and is very efficient when compare to the other approaches existing in literature.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.50
自引率
0.00%
发文量
9
期刊介绍: Miskolc Mathematical Notes, HU ISSN 1787-2405 (printed version), HU ISSN 1787-2413 (electronic version), is a peer-reviewed international mathematical journal aiming at the dissemination of results in many fields of pure and applied mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信