利用强核分数积分算子求解m-凸函数的新方法

IF 0.9 4区 数学 Q2 MATHEMATICS
Merve Avci Ardıç, Havva Kavurmacı Önalan, Ahmet Ocak Akdemir, Anh Tuan Nguyen
{"title":"利用强核分数积分算子求解m-凸函数的新方法","authors":"Merve Avci Ardıç, Havva Kavurmacı Önalan, Ahmet Ocak Akdemir, Anh Tuan Nguyen","doi":"10.18514/mmn.2023.4104","DOIUrl":null,"url":null,"abstract":". We have established this paper on m − convex functions, which can be expressed as a general form of the convex function concept. First of all, some inequalities of Hadamard type are proved with fairly simple conditions. Next, an integral identity containing Atangana-Baleanu fractional integral operators is obtained to prove new inequalities for differentiable m - convex functions. Using this identity, various properties of m − convex functions and classical inequalities, some new integral inequalities have been proved.","PeriodicalId":51252,"journal":{"name":"Miskolc Mathematical Notes","volume":"33 1","pages":"0"},"PeriodicalIF":0.9000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"New approaches for m-convex functions via fractional integral operators with strong kernels\",\"authors\":\"Merve Avci Ardıç, Havva Kavurmacı Önalan, Ahmet Ocak Akdemir, Anh Tuan Nguyen\",\"doi\":\"10.18514/mmn.2023.4104\",\"DOIUrl\":null,\"url\":null,\"abstract\":\". We have established this paper on m − convex functions, which can be expressed as a general form of the convex function concept. First of all, some inequalities of Hadamard type are proved with fairly simple conditions. Next, an integral identity containing Atangana-Baleanu fractional integral operators is obtained to prove new inequalities for differentiable m - convex functions. Using this identity, various properties of m − convex functions and classical inequalities, some new integral inequalities have been proved.\",\"PeriodicalId\":51252,\"journal\":{\"name\":\"Miskolc Mathematical Notes\",\"volume\":\"33 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Miskolc Mathematical Notes\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18514/mmn.2023.4104\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Miskolc Mathematical Notes","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18514/mmn.2023.4104","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。
New approaches for m-convex functions via fractional integral operators with strong kernels
. We have established this paper on m − convex functions, which can be expressed as a general form of the convex function concept. First of all, some inequalities of Hadamard type are proved with fairly simple conditions. Next, an integral identity containing Atangana-Baleanu fractional integral operators is obtained to prove new inequalities for differentiable m - convex functions. Using this identity, various properties of m − convex functions and classical inequalities, some new integral inequalities have been proved.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.50
自引率
0.00%
发文量
9
期刊介绍: Miskolc Mathematical Notes, HU ISSN 1787-2405 (printed version), HU ISSN 1787-2413 (electronic version), is a peer-reviewed international mathematical journal aiming at the dissemination of results in many fields of pure and applied mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信