José Luis Calvo-Guirado, Marta Belén Cabo-Pastor, Félix de Carlos-Villafranca, Nuria García-Carrillo, Manuel Fernández-Domínguez, Francisco Martínez Martínez
{"title":"显微ct评价微结构后锥度牙槽和次牙槽种植体骨生长概念。新西兰兔1月龄胫骨的初步研究","authors":"José Luis Calvo-Guirado, Marta Belén Cabo-Pastor, Félix de Carlos-Villafranca, Nuria García-Carrillo, Manuel Fernández-Domínguez, Francisco Martínez Martínez","doi":"10.3934/bioeng.2023024","DOIUrl":null,"url":null,"abstract":"<abstract> <p>The primary purpose of this study was to determine the accuracy of micro-computed tomography (micro-CT) as a novel tool for the 3D analysis of bone density around dental implants in tibia rabbits. Six male New Zealand rabbits were used in our evaluation. One Copa SKY® (Bredent Medical GmbH &amp; Co. K.G.) with a 3.5 mm diameter by 8.0 mm in length was placed within 12 tibia rabbits divided into two experimental groups: Group A (crestal placement) and Group B (sub-crestal placement). The animals were sacrificed at four weeks. Micro-CT evaluations showed a high amount of bone around all implants in the tibia rabbit bone. There was an increased formation of bone around the Copa SKY implants, mainly in the implants that were placed crestally. The most frequent density found in most implants was a medullary bone formation surrounding the implant; the density three (D3) was the most common type in all implants. The 3D model analysis revealed a mean bone volume (B.V.) of 31.24 ± 1.24% in crestal implants compared with the 43.12 ± 0.43% in sub-crestal implants. The mean actual contact implant to bone (B.I.C.) in the sub-crestal group was 51.76 ± 0.86%, compared to the 42.63 ± 0.75% in the crestal group. Compared to crestal implants, the Copa Sky implant placed sub-crestally allows for the formation of bone on top of the neck, thereby stimulating bone growth in tibia rabbits.</p> </abstract>","PeriodicalId":45029,"journal":{"name":"AIMS Bioengineering","volume":"128 1","pages":"0"},"PeriodicalIF":1.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Micro-CT evaluation of bone grow concept of an implant with microstructured backtaper crestally and sub-crestally placed. Preliminary study in New Zealand rabbits tibia at one month\",\"authors\":\"José Luis Calvo-Guirado, Marta Belén Cabo-Pastor, Félix de Carlos-Villafranca, Nuria García-Carrillo, Manuel Fernández-Domínguez, Francisco Martínez Martínez\",\"doi\":\"10.3934/bioeng.2023024\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<abstract> <p>The primary purpose of this study was to determine the accuracy of micro-computed tomography (micro-CT) as a novel tool for the 3D analysis of bone density around dental implants in tibia rabbits. Six male New Zealand rabbits were used in our evaluation. One Copa SKY® (Bredent Medical GmbH &amp; Co. K.G.) with a 3.5 mm diameter by 8.0 mm in length was placed within 12 tibia rabbits divided into two experimental groups: Group A (crestal placement) and Group B (sub-crestal placement). The animals were sacrificed at four weeks. Micro-CT evaluations showed a high amount of bone around all implants in the tibia rabbit bone. There was an increased formation of bone around the Copa SKY implants, mainly in the implants that were placed crestally. The most frequent density found in most implants was a medullary bone formation surrounding the implant; the density three (D3) was the most common type in all implants. The 3D model analysis revealed a mean bone volume (B.V.) of 31.24 ± 1.24% in crestal implants compared with the 43.12 ± 0.43% in sub-crestal implants. The mean actual contact implant to bone (B.I.C.) in the sub-crestal group was 51.76 ± 0.86%, compared to the 42.63 ± 0.75% in the crestal group. Compared to crestal implants, the Copa Sky implant placed sub-crestally allows for the formation of bone on top of the neck, thereby stimulating bone growth in tibia rabbits.</p> </abstract>\",\"PeriodicalId\":45029,\"journal\":{\"name\":\"AIMS Bioengineering\",\"volume\":\"128 1\",\"pages\":\"0\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"AIMS Bioengineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3934/bioeng.2023024\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"AIMS Bioengineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3934/bioeng.2023024","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
摘要
& lt; abstract>本研究的主要目的是确定微型计算机断层扫描(micro-CT)作为胫骨兔牙种植体周围骨密度三维分析的新工具的准确性。6只雄性新西兰兔被用于我们的评估。One Copa SKY®(brendent Medical GmbH &将直径3.5 mm,长度8.0 mm的胫骨骨植入12只胫骨兔体内,分为a组(嵴放置)和B组(嵴下放置)两个实验组。这些动物在四周时被宰杀。显微ct评估显示胫骨兔骨内所有植入物周围有大量骨。Copa SKY种植体周围骨形成增加,主要发生在牙槽位种植体。在大多数种植体中最常见的密度是种植体周围的髓样骨形成;密度3 (D3)是所有种植体中最常见的类型。三维模型分析显示,牙冠种植体的平均骨体积(B.V.)为31.24±1.24%,牙冠下种植体的平均骨体积(B.V.)为43.12±0.43%。牙冠下组种植体与骨的平均实际接触率为51.76±0.86%,牙冠组为42.63±0.75%。与牙冠种植体相比,Copa Sky牙冠下种植体允许在颈部顶部形成骨,从而刺激胫骨兔的骨生长。& lt; / abstract>
Micro-CT evaluation of bone grow concept of an implant with microstructured backtaper crestally and sub-crestally placed. Preliminary study in New Zealand rabbits tibia at one month
The primary purpose of this study was to determine the accuracy of micro-computed tomography (micro-CT) as a novel tool for the 3D analysis of bone density around dental implants in tibia rabbits. Six male New Zealand rabbits were used in our evaluation. One Copa SKY® (Bredent Medical GmbH & Co. K.G.) with a 3.5 mm diameter by 8.0 mm in length was placed within 12 tibia rabbits divided into two experimental groups: Group A (crestal placement) and Group B (sub-crestal placement). The animals were sacrificed at four weeks. Micro-CT evaluations showed a high amount of bone around all implants in the tibia rabbit bone. There was an increased formation of bone around the Copa SKY implants, mainly in the implants that were placed crestally. The most frequent density found in most implants was a medullary bone formation surrounding the implant; the density three (D3) was the most common type in all implants. The 3D model analysis revealed a mean bone volume (B.V.) of 31.24 ± 1.24% in crestal implants compared with the 43.12 ± 0.43% in sub-crestal implants. The mean actual contact implant to bone (B.I.C.) in the sub-crestal group was 51.76 ± 0.86%, compared to the 42.63 ± 0.75% in the crestal group. Compared to crestal implants, the Copa Sky implant placed sub-crestally allows for the formation of bone on top of the neck, thereby stimulating bone growth in tibia rabbits.