激光雷达与相机自适应紧耦合的同时定位与建图算法

IF 0.9 4区 物理与天体物理 Q4 ENGINEERING, ELECTRICAL & ELECTRONIC
周维超 Zhou Weichao, 黄俊 Huang Jun
{"title":"激光雷达与相机自适应紧耦合的同时定位与建图算法","authors":"周维超 Zhou Weichao, 黄俊 Huang Jun","doi":"10.3788/lop223209","DOIUrl":null,"url":null,"abstract":"同时定位与建图(SLAM)是自动驾驶的基本要求之一。多传感器融合,尤其是激光雷达和相机的融合,对于自动驾驶来说是必不可少的。其中,如何针对各种场景调整不同传感器的置信度是关键问题,基于此,提出一种自适应紧耦合的激光雷达相机融合的SLAM(AVLS)算法。首先,所提AVLS算法建立在基于滑动窗口的因子图上,包含提升整体算法精度和鲁棒性的灵活深度关联和弹性初始化等模块。其次,为了充分探索激光雷达和相机在不同环境中的性能,采用一种基于先验知识的动态加权方案。最后,将所提AVLS算法在两个公开的大规模自动驾驶数据集上进行了全面实验,包括与经典算法的对比及消融实验,实验结果表明,AVLS算法的鲁棒性和精确度可以达到目前领先水平。","PeriodicalId":51502,"journal":{"name":"激光与光电子学进展","volume":"28 1","pages":"0"},"PeriodicalIF":0.9000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"激光雷达与相机自适应紧耦合的同时定位与建图算法\",\"authors\":\"周维超 Zhou Weichao, 黄俊 Huang Jun\",\"doi\":\"10.3788/lop223209\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"同时定位与建图(SLAM)是自动驾驶的基本要求之一。多传感器融合,尤其是激光雷达和相机的融合,对于自动驾驶来说是必不可少的。其中,如何针对各种场景调整不同传感器的置信度是关键问题,基于此,提出一种自适应紧耦合的激光雷达相机融合的SLAM(AVLS)算法。首先,所提AVLS算法建立在基于滑动窗口的因子图上,包含提升整体算法精度和鲁棒性的灵活深度关联和弹性初始化等模块。其次,为了充分探索激光雷达和相机在不同环境中的性能,采用一种基于先验知识的动态加权方案。最后,将所提AVLS算法在两个公开的大规模自动驾驶数据集上进行了全面实验,包括与经典算法的对比及消融实验,实验结果表明,AVLS算法的鲁棒性和精确度可以达到目前领先水平。\",\"PeriodicalId\":51502,\"journal\":{\"name\":\"激光与光电子学进展\",\"volume\":\"28 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"激光与光电子学进展\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3788/lop223209\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"激光与光电子学进展","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3788/lop223209","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

同时定位与建图(SLAM)是自动驾驶的基本要求之一。多传感器融合,尤其是激光雷达和相机的融合,对于自动驾驶来说是必不可少的。其中,如何针对各种场景调整不同传感器的置信度是关键问题,基于此,提出一种自适应紧耦合的激光雷达相机融合的SLAM(AVLS)算法。首先,所提AVLS算法建立在基于滑动窗口的因子图上,包含提升整体算法精度和鲁棒性的灵活深度关联和弹性初始化等模块。其次,为了充分探索激光雷达和相机在不同环境中的性能,采用一种基于先验知识的动态加权方案。最后,将所提AVLS算法在两个公开的大规模自动驾驶数据集上进行了全面实验,包括与经典算法的对比及消融实验,实验结果表明,AVLS算法的鲁棒性和精确度可以达到目前领先水平。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
激光雷达与相机自适应紧耦合的同时定位与建图算法
同时定位与建图(SLAM)是自动驾驶的基本要求之一。多传感器融合,尤其是激光雷达和相机的融合,对于自动驾驶来说是必不可少的。其中,如何针对各种场景调整不同传感器的置信度是关键问题,基于此,提出一种自适应紧耦合的激光雷达相机融合的SLAM(AVLS)算法。首先,所提AVLS算法建立在基于滑动窗口的因子图上,包含提升整体算法精度和鲁棒性的灵活深度关联和弹性初始化等模块。其次,为了充分探索激光雷达和相机在不同环境中的性能,采用一种基于先验知识的动态加权方案。最后,将所提AVLS算法在两个公开的大规模自动驾驶数据集上进行了全面实验,包括与经典算法的对比及消融实验,实验结果表明,AVLS算法的鲁棒性和精确度可以达到目前领先水平。
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.60
自引率
50.00%
发文量
18006
期刊介绍: Laser & Optoelectronics Progress, the first laser and optoelectronics journal published in China. The main columns include general, lasers and laser optics, fiber optics and optical communications, optical design and fabrication, materials, image processing, imaging systems, optical devices, remote sensing and sensors, atmospheric optics and oceanic optics, diffraction and gratings, atomic and molecular physics, detectors, thin films, ultrafast optics, etc. The journal is included in ESCI, INSPEC, Scopus, CSCD, Chinese Core Journals, Chinese Science and Technology Core Journals, and T2 level of the Classified Catalogue of High Quality Science and Technology Journals in Optical Engineering and Optical Fields, and other databases.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信