{"title":"拉伸载荷下柔性超双疏表面的润湿稳定性","authors":"Shuangshuang Xu, Qing Wang, Ning Wang, Lei Qu","doi":"10.1680/jsuin.21.00079","DOIUrl":null,"url":null,"abstract":"Wetting stability is important for superamphiphobic surfaces used in oil–water environments. Maintaining the wetting stability of flexible superamphiphobic surfaces under stretching is challenging. Here, flexible surfaces with stable superamphiphobicity under stretching were fabricated by covering flexible polydimethylsiloxane substrates with superamphiphobic powders. Superamphiphobic powders composed of micro- and nanoparticles were prepared by a chemical substitution reaction and modification treatment. The fabricated flexible surfaces possessed contact angles for water, kerosene and peanut oil of 155, 152 and 153°, respectively, exhibiting superhydrophobicity and superoleophobicity. The self-cleaning properties of the fabricated flexible surface were studied by removing contaminants from the surfaces using water and oil droplets. Also, the wettability and morphology of the fabricated flexible surface under stretching were investigated. It was found that the fabricated flexible surface maintained stable superhydrophobicity and superoleophobicity when the stretching strain reached 60% due to the fact that it still kept micro–nano double-scale structures after being stretched. The fabricated flexible surface coated with superamphiphobic powders with wetting stability is expected to be used in the field of liquid repellency.","PeriodicalId":22032,"journal":{"name":"Surface Innovations","volume":null,"pages":null},"PeriodicalIF":2.7000,"publicationDate":"2023-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Wetting stability of flexible superamphiphobic surfaces under stretching loading\",\"authors\":\"Shuangshuang Xu, Qing Wang, Ning Wang, Lei Qu\",\"doi\":\"10.1680/jsuin.21.00079\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Wetting stability is important for superamphiphobic surfaces used in oil–water environments. Maintaining the wetting stability of flexible superamphiphobic surfaces under stretching is challenging. Here, flexible surfaces with stable superamphiphobicity under stretching were fabricated by covering flexible polydimethylsiloxane substrates with superamphiphobic powders. Superamphiphobic powders composed of micro- and nanoparticles were prepared by a chemical substitution reaction and modification treatment. The fabricated flexible surfaces possessed contact angles for water, kerosene and peanut oil of 155, 152 and 153°, respectively, exhibiting superhydrophobicity and superoleophobicity. The self-cleaning properties of the fabricated flexible surface were studied by removing contaminants from the surfaces using water and oil droplets. Also, the wettability and morphology of the fabricated flexible surface under stretching were investigated. It was found that the fabricated flexible surface maintained stable superhydrophobicity and superoleophobicity when the stretching strain reached 60% due to the fact that it still kept micro–nano double-scale structures after being stretched. The fabricated flexible surface coated with superamphiphobic powders with wetting stability is expected to be used in the field of liquid repellency.\",\"PeriodicalId\":22032,\"journal\":{\"name\":\"Surface Innovations\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2023-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Surface Innovations\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1680/jsuin.21.00079\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Surface Innovations","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1680/jsuin.21.00079","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Wetting stability of flexible superamphiphobic surfaces under stretching loading
Wetting stability is important for superamphiphobic surfaces used in oil–water environments. Maintaining the wetting stability of flexible superamphiphobic surfaces under stretching is challenging. Here, flexible surfaces with stable superamphiphobicity under stretching were fabricated by covering flexible polydimethylsiloxane substrates with superamphiphobic powders. Superamphiphobic powders composed of micro- and nanoparticles were prepared by a chemical substitution reaction and modification treatment. The fabricated flexible surfaces possessed contact angles for water, kerosene and peanut oil of 155, 152 and 153°, respectively, exhibiting superhydrophobicity and superoleophobicity. The self-cleaning properties of the fabricated flexible surface were studied by removing contaminants from the surfaces using water and oil droplets. Also, the wettability and morphology of the fabricated flexible surface under stretching were investigated. It was found that the fabricated flexible surface maintained stable superhydrophobicity and superoleophobicity when the stretching strain reached 60% due to the fact that it still kept micro–nano double-scale structures after being stretched. The fabricated flexible surface coated with superamphiphobic powders with wetting stability is expected to be used in the field of liquid repellency.
Surface InnovationsCHEMISTRY, PHYSICALMATERIALS SCIENCE, COAT-MATERIALS SCIENCE, COATINGS & FILMS
CiteScore
5.80
自引率
22.90%
发文量
66
期刊介绍:
The material innovations on surfaces, combined with understanding and manipulation of physics and chemistry of functional surfaces and coatings, have exploded in the past decade at an incredibly rapid pace.
Superhydrophobicity, superhydrophlicity, self-cleaning, self-healing, anti-fouling, anti-bacterial, etc., have become important fundamental topics of surface science research community driven by curiosity of physics, chemistry, and biology of interaction phenomenon at surfaces and their enormous potential in practical applications. Materials having controlled-functionality surfaces and coatings are important to the manufacturing of new products for environmental control, liquid manipulation, nanotechnological advances, biomedical engineering, pharmacy, biotechnology, and many others, and are part of the most promising technological innovations of the twenty-first century.