在最小的区域$$(n-1)$$ -gon上包含一个凸n-gon

IF 0.6 3区 数学 Q3 MATHEMATICS
David E. Hong, Dan Ismailescu, Alex Kwak, Grace Y. Park
{"title":"在最小的区域$$(n-1)$$ -gon上包含一个凸n-gon","authors":"David E. Hong, Dan Ismailescu, Alex Kwak, Grace Y. Park","doi":"10.1007/s10998-023-00527-4","DOIUrl":null,"url":null,"abstract":"Approximation of convex disks by inscribed and circumscribed polygons is a classical geometric problem whose study is motivated by various applications in robotics and computer aided design. We consider the following optimization problem: given integers $$3\\le n\\le m-1$$ , find the value or an estimate of $$\\begin{aligned} r(n,m)=\\max _{P\\in {\\mathcal {P}}_m}\\,\\, \\min _{Q\\in {\\mathcal {P}}_n,\\,Q \\supseteq P} \\frac{|Q|}{|P|} \\end{aligned}$$ where P varies in the set $${\\mathcal {P}}_m$$ of all convex m-gons, and, for a fixed m-gon P, the minimum is taken over all n-gons Q containing P; here $$|\\cdot |$$ denotes area. It is easy to prove that $$r(3,4)=2$$ , and from a result of Gronchi and Longinetti it follows that $$r(n-1, n)= 1+\\frac{1}{n}\\tan \\left( \\pi /{n}\\right) \\tan \\left( {2\\pi }/{n}\\right) $$ for all $$n\\ge 6$$ . In this paper we show that every unit area convex pentagon is contained in a convex quadrilateral of area no greater than $$3/\\sqrt{5}$$ thus determining the value of r(4, 5). In all cases, the equality is reached only for affine regular polygons.","PeriodicalId":49706,"journal":{"name":"Periodica Mathematica Hungarica","volume":"1 1","pages":"0"},"PeriodicalIF":0.6000,"publicationDate":"2023-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the smallest area $$(n-1)$$-gon containing a convex n-gon\",\"authors\":\"David E. Hong, Dan Ismailescu, Alex Kwak, Grace Y. Park\",\"doi\":\"10.1007/s10998-023-00527-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Approximation of convex disks by inscribed and circumscribed polygons is a classical geometric problem whose study is motivated by various applications in robotics and computer aided design. We consider the following optimization problem: given integers $$3\\\\le n\\\\le m-1$$ , find the value or an estimate of $$\\\\begin{aligned} r(n,m)=\\\\max _{P\\\\in {\\\\mathcal {P}}_m}\\\\,\\\\, \\\\min _{Q\\\\in {\\\\mathcal {P}}_n,\\\\,Q \\\\supseteq P} \\\\frac{|Q|}{|P|} \\\\end{aligned}$$ where P varies in the set $${\\\\mathcal {P}}_m$$ of all convex m-gons, and, for a fixed m-gon P, the minimum is taken over all n-gons Q containing P; here $$|\\\\cdot |$$ denotes area. It is easy to prove that $$r(3,4)=2$$ , and from a result of Gronchi and Longinetti it follows that $$r(n-1, n)= 1+\\\\frac{1}{n}\\\\tan \\\\left( \\\\pi /{n}\\\\right) \\\\tan \\\\left( {2\\\\pi }/{n}\\\\right) $$ for all $$n\\\\ge 6$$ . In this paper we show that every unit area convex pentagon is contained in a convex quadrilateral of area no greater than $$3/\\\\sqrt{5}$$ thus determining the value of r(4, 5). In all cases, the equality is reached only for affine regular polygons.\",\"PeriodicalId\":49706,\"journal\":{\"name\":\"Periodica Mathematica Hungarica\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2023-06-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Periodica Mathematica Hungarica\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s10998-023-00527-4\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Periodica Mathematica Hungarica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s10998-023-00527-4","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

内切多边形逼近凸盘是一个经典的几何问题,其研究受到机器人和计算机辅助设计的各种应用的推动。我们考虑以下优化问题:给定整数$$3\le n\le m-1$$,求出所有凸m-gon集合$${\mathcal {P}}_m$$中P变化的值或估计值$$\begin{aligned} r(n,m)=\max _{P\in {\mathcal {P}}_m}\,\, \min _{Q\in {\mathcal {P}}_n,\,Q \supseteq P} \frac{|Q|}{|P|} \end{aligned}$$,并且对于一个固定的m-gon P,取所有包含P的n-gon Q的最小值;这里$$|\cdot |$$表示面积。很容易证明$$r(3,4)=2$$,从Gronchi和Longinetti的结果可以得出$$r(n-1, n)= 1+\frac{1}{n}\tan \left( \pi /{n}\right) \tan \left( {2\pi }/{n}\right) $$适用于所有$$n\ge 6$$。在本文中,我们证明了每个单位面积的凸五边形都包含在一个面积不大于$$3/\sqrt{5}$$的凸四边形中,从而确定了r(4,5)的值。在所有情况下,只有仿射正多边形才能达到这个等式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

On the smallest area $$(n-1)$$-gon containing a convex n-gon

On the smallest area $$(n-1)$$-gon containing a convex n-gon
Approximation of convex disks by inscribed and circumscribed polygons is a classical geometric problem whose study is motivated by various applications in robotics and computer aided design. We consider the following optimization problem: given integers $$3\le n\le m-1$$ , find the value or an estimate of $$\begin{aligned} r(n,m)=\max _{P\in {\mathcal {P}}_m}\,\, \min _{Q\in {\mathcal {P}}_n,\,Q \supseteq P} \frac{|Q|}{|P|} \end{aligned}$$ where P varies in the set $${\mathcal {P}}_m$$ of all convex m-gons, and, for a fixed m-gon P, the minimum is taken over all n-gons Q containing P; here $$|\cdot |$$ denotes area. It is easy to prove that $$r(3,4)=2$$ , and from a result of Gronchi and Longinetti it follows that $$r(n-1, n)= 1+\frac{1}{n}\tan \left( \pi /{n}\right) \tan \left( {2\pi }/{n}\right) $$ for all $$n\ge 6$$ . In this paper we show that every unit area convex pentagon is contained in a convex quadrilateral of area no greater than $$3/\sqrt{5}$$ thus determining the value of r(4, 5). In all cases, the equality is reached only for affine regular polygons.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.40
自引率
0.00%
发文量
67
审稿时长
>12 weeks
期刊介绍: Periodica Mathematica Hungarica is devoted to publishing research articles in all areas of pure and applied mathematics as well as theoretical computer science. To be published in the Periodica, a paper must be correct, new, and significant. Very strong submissions (upon the consent of the author) will be redirected to Acta Mathematica Hungarica. Periodica Mathematica Hungarica is the journal of the Hungarian Mathematical Society (János Bolyai Mathematical Society). The main profile of the journal is in pure mathematics, being open to applied mathematical papers with significant mathematical content.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信