基于凸优化的高斯混合收益和指数效用组合构建

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Eric Luxenberg, Stephen Boyd
{"title":"基于凸优化的高斯混合收益和指数效用组合构建","authors":"Eric Luxenberg, Stephen Boyd","doi":"10.1007/s11081-023-09814-y","DOIUrl":null,"url":null,"abstract":"We consider the problem of choosing an optimal portfolio, assuming the asset returns have a Gaussian mixture distribution, with the objective of maximizing expected exponential utility. In this paper we show that this problem is convex, and readily solved exactly using domain-specific languages for convex optimization, without the need for sampling or scenarios. We then show how the closely related problem of minimizing entropic value at risk can also be formulated as a convex optimization problem.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2023-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Portfolio construction with Gaussian mixture returns and exponential utility via convex optimization\",\"authors\":\"Eric Luxenberg, Stephen Boyd\",\"doi\":\"10.1007/s11081-023-09814-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider the problem of choosing an optimal portfolio, assuming the asset returns have a Gaussian mixture distribution, with the objective of maximizing expected exponential utility. In this paper we show that this problem is convex, and readily solved exactly using domain-specific languages for convex optimization, without the need for sampling or scenarios. We then show how the closely related problem of minimizing entropic value at risk can also be formulated as a convex optimization problem.\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2023-07-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s11081-023-09814-y\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s11081-023-09814-y","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

摘要

我们考虑选择最优投资组合的问题,假设资产收益具有高斯混合分布,目标是期望指数效用最大化。在本文中,我们证明了这个问题是凸的,并且很容易使用特定于领域的语言进行凸优化,而不需要采样或场景。然后,我们展示了如何密切相关的最小化风险熵值问题也可以表述为凸优化问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Portfolio construction with Gaussian mixture returns and exponential utility via convex optimization
We consider the problem of choosing an optimal portfolio, assuming the asset returns have a Gaussian mixture distribution, with the objective of maximizing expected exponential utility. In this paper we show that this problem is convex, and readily solved exactly using domain-specific languages for convex optimization, without the need for sampling or scenarios. We then show how the closely related problem of minimizing entropic value at risk can also be formulated as a convex optimization problem.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信