{"title":"基于凸优化的高斯混合收益和指数效用组合构建","authors":"Eric Luxenberg, Stephen Boyd","doi":"10.1007/s11081-023-09814-y","DOIUrl":null,"url":null,"abstract":"We consider the problem of choosing an optimal portfolio, assuming the asset returns have a Gaussian mixture distribution, with the objective of maximizing expected exponential utility. In this paper we show that this problem is convex, and readily solved exactly using domain-specific languages for convex optimization, without the need for sampling or scenarios. We then show how the closely related problem of minimizing entropic value at risk can also be formulated as a convex optimization problem.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2023-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Portfolio construction with Gaussian mixture returns and exponential utility via convex optimization\",\"authors\":\"Eric Luxenberg, Stephen Boyd\",\"doi\":\"10.1007/s11081-023-09814-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider the problem of choosing an optimal portfolio, assuming the asset returns have a Gaussian mixture distribution, with the objective of maximizing expected exponential utility. In this paper we show that this problem is convex, and readily solved exactly using domain-specific languages for convex optimization, without the need for sampling or scenarios. We then show how the closely related problem of minimizing entropic value at risk can also be formulated as a convex optimization problem.\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2023-07-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s11081-023-09814-y\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s11081-023-09814-y","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
Portfolio construction with Gaussian mixture returns and exponential utility via convex optimization
We consider the problem of choosing an optimal portfolio, assuming the asset returns have a Gaussian mixture distribution, with the objective of maximizing expected exponential utility. In this paper we show that this problem is convex, and readily solved exactly using domain-specific languages for convex optimization, without the need for sampling or scenarios. We then show how the closely related problem of minimizing entropic value at risk can also be formulated as a convex optimization problem.