度量度量空间中模的容量

Pub Date : 2023-06-05 DOI:10.7146/math.scand.a-136662
Olli Martio
{"title":"度量度量空间中模的容量","authors":"Olli Martio","doi":"10.7146/math.scand.a-136662","DOIUrl":null,"url":null,"abstract":"The concept of capacity is an indispensable tool for analysis and path families and their moduli play a fundamental role in a metric space $X$. It is shown that the $AM_p(\\Gamma )$- and $M_p(\\Gamma )$-modulus create the capacities, $\\mathrm {Cap}_p^{AM}(E,G)$ and $\\mathrm {Cap}_p^{M}(E,G)$, respectively, where Γ is the path family connecting an arbitrary set $E \\subset G$ to the complement of a bounded open set $G$. The capacities use Lipschitz functions and their upper gradients. For $p > 1$ the capacities coincide but differ for $p=1$. For $p \\geq 1$ it is shown that the $\\mathrm {Cap}_p^{AM}(E,G)$-capacity equals to the classical variational Dirichlet capacity of the condenser $(E,G)$ and the $\\mathrm {Cap}_p^{M}(E,G)$-capacity to the $M_p(\\Gamma )$-modulus.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Capacities from moduli in metric measure spaces\",\"authors\":\"Olli Martio\",\"doi\":\"10.7146/math.scand.a-136662\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The concept of capacity is an indispensable tool for analysis and path families and their moduli play a fundamental role in a metric space $X$. It is shown that the $AM_p(\\\\Gamma )$- and $M_p(\\\\Gamma )$-modulus create the capacities, $\\\\mathrm {Cap}_p^{AM}(E,G)$ and $\\\\mathrm {Cap}_p^{M}(E,G)$, respectively, where Γ is the path family connecting an arbitrary set $E \\\\subset G$ to the complement of a bounded open set $G$. The capacities use Lipschitz functions and their upper gradients. For $p > 1$ the capacities coincide but differ for $p=1$. For $p \\\\geq 1$ it is shown that the $\\\\mathrm {Cap}_p^{AM}(E,G)$-capacity equals to the classical variational Dirichlet capacity of the condenser $(E,G)$ and the $\\\\mathrm {Cap}_p^{M}(E,G)$-capacity to the $M_p(\\\\Gamma )$-modulus.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2023-06-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.7146/math.scand.a-136662\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7146/math.scand.a-136662","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

容量的概念是分析不可缺少的工具,路径族及其模在度量空间中起着至关重要的作用$X$。结果表明,$AM_p(\Gamma )$ -和$M_p(\Gamma )$ -模分别产生了容量$\mathrm {Cap}_p^{AM}(E,G)$和$\mathrm {Cap}_p^{M}(E,G)$,其中Γ是连接任意集$E \subset G$到有界开集$G$的补集的路径族。容量使用Lipschitz函数及其上梯度。对于$p > 1$,容量相同,但对于$p=1$则不同。对于$p \geq 1$,表明$\mathrm {Cap}_p^{AM}(E,G)$ -容量等于冷凝器的经典变分狄利克雷容量$(E,G)$, $\mathrm {Cap}_p^{M}(E,G)$ -容量等于$M_p(\Gamma )$ -模量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Capacities from moduli in metric measure spaces
The concept of capacity is an indispensable tool for analysis and path families and their moduli play a fundamental role in a metric space $X$. It is shown that the $AM_p(\Gamma )$- and $M_p(\Gamma )$-modulus create the capacities, $\mathrm {Cap}_p^{AM}(E,G)$ and $\mathrm {Cap}_p^{M}(E,G)$, respectively, where Γ is the path family connecting an arbitrary set $E \subset G$ to the complement of a bounded open set $G$. The capacities use Lipschitz functions and their upper gradients. For $p > 1$ the capacities coincide but differ for $p=1$. For $p \geq 1$ it is shown that the $\mathrm {Cap}_p^{AM}(E,G)$-capacity equals to the classical variational Dirichlet capacity of the condenser $(E,G)$ and the $\mathrm {Cap}_p^{M}(E,G)$-capacity to the $M_p(\Gamma )$-modulus.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信