Xingbang Wan, Dmitry Sukhomlinov, Pekka Taskinen, Mari Lindgren, Radoslaw Michallik, Ari Jokilaakso
{"title":"闪速熔炼烟气线条件下砷的冷凝及反应机理","authors":"Xingbang Wan, Dmitry Sukhomlinov, Pekka Taskinen, Mari Lindgren, Radoslaw Michallik, Ari Jokilaakso","doi":"10.1007/s11663-023-02871-9","DOIUrl":null,"url":null,"abstract":"Abstract Arsenic is a common impurity element in sulfide concentrates. It tends to accumulate in the flue dust of smelting furnace due to the volatility and internal circulation of the flue dust practiced in the smelting-converting process chain. The only outlets for arsenic are anodes and discard slag. Arsenic condensation in dust-free conditions was studied below 800 °C where the gas atmosphere was controlled by SO 2 -air-N 2 gas mixtures. Based on these experimental results, we confirm the kinetically constrained formation mechanism of the arsenic-containing dust, and its speciation into metallic, oxidic (III, V), and sulfidic species. The influences of temperature and atmosphere on the speciation of arsenic were compared with industrial data and discussed. Graphical Abstract Condensed arsenic‐bearing particles collected by electrophoretic forces on the surface of fused SiO 2 in SO 2 ‐O 2 atmospheres: the crystal morphology shows euhedrally facetted As 2 O 3 crystals and initially molten As‐OS alloy droplets together with poorly crystallized AsS x particles.","PeriodicalId":51126,"journal":{"name":"Metallurgical and Materials Transactions B-Process Metallurgy and Materials Processing Science","volume":"239 1","pages":"0"},"PeriodicalIF":2.4000,"publicationDate":"2023-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Arsenic Condensation and Reaction Mechanisms in Flash Smelting Off-Gas Line Conditions\",\"authors\":\"Xingbang Wan, Dmitry Sukhomlinov, Pekka Taskinen, Mari Lindgren, Radoslaw Michallik, Ari Jokilaakso\",\"doi\":\"10.1007/s11663-023-02871-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Arsenic is a common impurity element in sulfide concentrates. It tends to accumulate in the flue dust of smelting furnace due to the volatility and internal circulation of the flue dust practiced in the smelting-converting process chain. The only outlets for arsenic are anodes and discard slag. Arsenic condensation in dust-free conditions was studied below 800 °C where the gas atmosphere was controlled by SO 2 -air-N 2 gas mixtures. Based on these experimental results, we confirm the kinetically constrained formation mechanism of the arsenic-containing dust, and its speciation into metallic, oxidic (III, V), and sulfidic species. The influences of temperature and atmosphere on the speciation of arsenic were compared with industrial data and discussed. Graphical Abstract Condensed arsenic‐bearing particles collected by electrophoretic forces on the surface of fused SiO 2 in SO 2 ‐O 2 atmospheres: the crystal morphology shows euhedrally facetted As 2 O 3 crystals and initially molten As‐OS alloy droplets together with poorly crystallized AsS x particles.\",\"PeriodicalId\":51126,\"journal\":{\"name\":\"Metallurgical and Materials Transactions B-Process Metallurgy and Materials Processing Science\",\"volume\":\"239 1\",\"pages\":\"0\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2023-07-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Metallurgical and Materials Transactions B-Process Metallurgy and Materials Processing Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s11663-023-02871-9\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Metallurgical and Materials Transactions B-Process Metallurgy and Materials Processing Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s11663-023-02871-9","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
摘要
砷是硫化物精矿中常见的杂质元素。由于熔炼转化过程中烟道粉尘的挥发性和内循环,易在冶炼炉膛烟道粉尘中积累。砷的唯一出口是阳极和废渣。研究了在800℃以下无尘条件下砷的冷凝过程,其中气体气氛由so2 -空气- n2混合气体控制。基于这些实验结果,我们确认了含砷粉尘的动力学约束形成机制,并确定了含砷粉尘的金属、氧化(III、V)和硫化物形态。比较了温度和大气对砷形态的影响,并与工业数据进行了讨论。在so2 - O - 2气氛下,电泳力在熔融二氧化硅表面收集了浓缩的含砷颗粒:晶体形态表现为自面状的As - O - 3晶体和初始熔融的As - OS合金液滴以及结晶不良的asx颗粒。
Arsenic Condensation and Reaction Mechanisms in Flash Smelting Off-Gas Line Conditions
Abstract Arsenic is a common impurity element in sulfide concentrates. It tends to accumulate in the flue dust of smelting furnace due to the volatility and internal circulation of the flue dust practiced in the smelting-converting process chain. The only outlets for arsenic are anodes and discard slag. Arsenic condensation in dust-free conditions was studied below 800 °C where the gas atmosphere was controlled by SO 2 -air-N 2 gas mixtures. Based on these experimental results, we confirm the kinetically constrained formation mechanism of the arsenic-containing dust, and its speciation into metallic, oxidic (III, V), and sulfidic species. The influences of temperature and atmosphere on the speciation of arsenic were compared with industrial data and discussed. Graphical Abstract Condensed arsenic‐bearing particles collected by electrophoretic forces on the surface of fused SiO 2 in SO 2 ‐O 2 atmospheres: the crystal morphology shows euhedrally facetted As 2 O 3 crystals and initially molten As‐OS alloy droplets together with poorly crystallized AsS x particles.
期刊介绍:
Focused on process metallurgy and materials processing science, Metallurgical and Materials Transactions B contains only original, critically reviewed research on primary manufacturing processes, from extractive metallurgy to the making of a shape.
A joint publication of ASM International and TMS (The Minerals, Metals and Materials Society), Metallurgical and Materials Transactions B publishes contributions bimonthly on the theoretical and engineering aspects of the processing of metals and other materials, including studies of electro- and physical chemistry, mass transport, modeling and related computer applications.
Articles cover extractive and process metallurgy, pyrometallurgy, hydrometallurgy, electrometallurgy, transport phenomena, process control, physical chemistry, solidification, mechanical working, solid state reactions, composite materials, materials processing and the environment.