Ziwei Liu, Yongfei Yang, Qi Zhang, Gloire Imani, Lei Zhang, Hai Sun, Junjie Zhong, Kai Zhang, Jun Yao
{"title":"基于水-力耦合模型的深层页岩CO2渗流诱导裂缝扩展孔隙尺度模拟","authors":"Ziwei Liu, Yongfei Yang, Qi Zhang, Gloire Imani, Lei Zhang, Hai Sun, Junjie Zhong, Kai Zhang, Jun Yao","doi":"10.2118/217990-pa","DOIUrl":null,"url":null,"abstract":"Summary The depletion of conventional reservoirs has led to increased interest in deep shale gas. Hydraulic fracturing addresses the challenge of developing low-permeability shale, involving hydro-mechanical coupling fracture propagation mechanics. Supercritical CO2 (SC-CO2) has become a promising alternative to fracturing fluids due to its ability to be buried underground after use. The high temperature, pressure, and stress of deep shale lead to the flow of fracturing fluid to plastic deformation of rock, resulting in microfractures. In this paper, we simulate the fracture propagation process of deep shale fractured by SC-CO2 based on the coupling of the Darcy-Brinkman-Biot method, which adopts the Navier-Stokes-like equation to solve the free flow region, and the Darcy equation with Biot’s theory to solve flow in the matrix. To clearly probe the mechanism of deep fracturing from a microscopic perspective, the plastic rock property is taken into consideration. We investigate the effects of injection velocity, rock plastic yield stress, formation pressure, and gas slippage effect on fluid saturation and fracture morphology, and find that increasing the injection rate of fracturing fluid can form better extended fractures and complex fracture networks, improving the fracturing effect. Furthermore, we find that it is more appropriate to adopt SC-CO2 as a fracturing fluid alternative in deep shale with higher plastic yield stress due to higher CO2 saturation in the matrix, indicating greater carbon sequestration potential. High confining pressure promotes the growth of shear fractures, which are capable of more complex fracture profiles. The gas slip effect has a significant impact on the stress field while ignoring the flow field. This study sheds light on which deep shale gas reservoirs are appropriate for the use of SC-CO2 as a fracturing fluid and offers recommendations for how to enhance the fracturing effect at the pore scale.","PeriodicalId":22252,"journal":{"name":"SPE Journal","volume":"40 1","pages":"0"},"PeriodicalIF":3.2000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Pore-Scale Simulation of Fracture Propagation by CO2 Flow Induced in Deep Shale Based on Hydro-Mechanical Coupled Model\",\"authors\":\"Ziwei Liu, Yongfei Yang, Qi Zhang, Gloire Imani, Lei Zhang, Hai Sun, Junjie Zhong, Kai Zhang, Jun Yao\",\"doi\":\"10.2118/217990-pa\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Summary The depletion of conventional reservoirs has led to increased interest in deep shale gas. Hydraulic fracturing addresses the challenge of developing low-permeability shale, involving hydro-mechanical coupling fracture propagation mechanics. Supercritical CO2 (SC-CO2) has become a promising alternative to fracturing fluids due to its ability to be buried underground after use. The high temperature, pressure, and stress of deep shale lead to the flow of fracturing fluid to plastic deformation of rock, resulting in microfractures. In this paper, we simulate the fracture propagation process of deep shale fractured by SC-CO2 based on the coupling of the Darcy-Brinkman-Biot method, which adopts the Navier-Stokes-like equation to solve the free flow region, and the Darcy equation with Biot’s theory to solve flow in the matrix. To clearly probe the mechanism of deep fracturing from a microscopic perspective, the plastic rock property is taken into consideration. We investigate the effects of injection velocity, rock plastic yield stress, formation pressure, and gas slippage effect on fluid saturation and fracture morphology, and find that increasing the injection rate of fracturing fluid can form better extended fractures and complex fracture networks, improving the fracturing effect. Furthermore, we find that it is more appropriate to adopt SC-CO2 as a fracturing fluid alternative in deep shale with higher plastic yield stress due to higher CO2 saturation in the matrix, indicating greater carbon sequestration potential. High confining pressure promotes the growth of shear fractures, which are capable of more complex fracture profiles. The gas slip effect has a significant impact on the stress field while ignoring the flow field. This study sheds light on which deep shale gas reservoirs are appropriate for the use of SC-CO2 as a fracturing fluid and offers recommendations for how to enhance the fracturing effect at the pore scale.\",\"PeriodicalId\":22252,\"journal\":{\"name\":\"SPE Journal\",\"volume\":\"40 1\",\"pages\":\"0\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2023-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SPE Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2118/217990-pa\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, PETROLEUM\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SPE Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2118/217990-pa","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, PETROLEUM","Score":null,"Total":0}
Pore-Scale Simulation of Fracture Propagation by CO2 Flow Induced in Deep Shale Based on Hydro-Mechanical Coupled Model
Summary The depletion of conventional reservoirs has led to increased interest in deep shale gas. Hydraulic fracturing addresses the challenge of developing low-permeability shale, involving hydro-mechanical coupling fracture propagation mechanics. Supercritical CO2 (SC-CO2) has become a promising alternative to fracturing fluids due to its ability to be buried underground after use. The high temperature, pressure, and stress of deep shale lead to the flow of fracturing fluid to plastic deformation of rock, resulting in microfractures. In this paper, we simulate the fracture propagation process of deep shale fractured by SC-CO2 based on the coupling of the Darcy-Brinkman-Biot method, which adopts the Navier-Stokes-like equation to solve the free flow region, and the Darcy equation with Biot’s theory to solve flow in the matrix. To clearly probe the mechanism of deep fracturing from a microscopic perspective, the plastic rock property is taken into consideration. We investigate the effects of injection velocity, rock plastic yield stress, formation pressure, and gas slippage effect on fluid saturation and fracture morphology, and find that increasing the injection rate of fracturing fluid can form better extended fractures and complex fracture networks, improving the fracturing effect. Furthermore, we find that it is more appropriate to adopt SC-CO2 as a fracturing fluid alternative in deep shale with higher plastic yield stress due to higher CO2 saturation in the matrix, indicating greater carbon sequestration potential. High confining pressure promotes the growth of shear fractures, which are capable of more complex fracture profiles. The gas slip effect has a significant impact on the stress field while ignoring the flow field. This study sheds light on which deep shale gas reservoirs are appropriate for the use of SC-CO2 as a fracturing fluid and offers recommendations for how to enhance the fracturing effect at the pore scale.
期刊介绍:
Covers theories and emerging concepts spanning all aspects of engineering for oil and gas exploration and production, including reservoir characterization, multiphase flow, drilling dynamics, well architecture, gas well deliverability, numerical simulation, enhanced oil recovery, CO2 sequestration, and benchmarking and performance indicators.