利用Sentinel-2和Landsat OLI数据提取Chla的经验模型和机器学习模型的比较分析:机遇、限制和挑战

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Amir M. Chegoonian, Nima Pahlevan, Kiana Zolfaghari, Peter R. Leavitt, John-Mark Davies, Helen M. Baulch, Claude R. Duguay
{"title":"利用Sentinel-2和Landsat OLI数据提取Chla的经验模型和机器学习模型的比较分析:机遇、限制和挑战","authors":"Amir M. Chegoonian, Nima Pahlevan, Kiana Zolfaghari, Peter R. Leavitt, John-Mark Davies, Helen M. Baulch, Claude R. Duguay","doi":"10.1080/07038992.2023.2215333","DOIUrl":null,"url":null,"abstract":"Remote retrieval of near-surface chlorophyll-a (Chla) concentration in small inland waters is challenging due to substantial optical interferences of various water constituents and uncertainties in the atmospheric correction (AC) process. Although various algorithms have been developed to estimate Chla from moderate-resolution terrestrial missions (∼10–60 m), the production of both accurate distribution maps and time series of Chla has proven challenging, limiting the use of remote analyses for lake monitoring. Here, we develop a support vector regression (SVR) model, which uses satellite-derived remote-sensing reflectance spectra (Rrsδ) from Sentinel-2 and Landsat-8 images as input for Chla retrieval in a representative eutrophic prairie lake, Buffalo Pound Lake (BPL), Saskatchewan, Canada. Validated against in situ Chla from seven ice-free seasons (N ∼ 200; 2014–2020), the SVR model outperformed both locally tuned, Rrsδ-fed empirical models (Normalized Difference Chlorophyll Index, 2- and 3-band, and OC3) and Mixture Density Networks (MDNs) by 15–65%, while exhibiting comparable performance to a locally trained MDN, with an error of ∼35%. Comparison of Chla retrieval models, AC processors (iCOR, ACOLITE), and radiometric products (Rayleigh-corrected, surface, and top-of-atmosphere reflectance) showed that the best Chla maps and optimal time series (up to 100 mg m−3) were produced using a coupled SVR-iCOR system.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2023-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Comparative Analysis of Empirical and Machine Learning Models for Chl<i>a</i> Extraction Using Sentinel-2 and Landsat OLI Data: Opportunities, Limitations, and Challenges\",\"authors\":\"Amir M. Chegoonian, Nima Pahlevan, Kiana Zolfaghari, Peter R. Leavitt, John-Mark Davies, Helen M. Baulch, Claude R. Duguay\",\"doi\":\"10.1080/07038992.2023.2215333\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Remote retrieval of near-surface chlorophyll-a (Chla) concentration in small inland waters is challenging due to substantial optical interferences of various water constituents and uncertainties in the atmospheric correction (AC) process. Although various algorithms have been developed to estimate Chla from moderate-resolution terrestrial missions (∼10–60 m), the production of both accurate distribution maps and time series of Chla has proven challenging, limiting the use of remote analyses for lake monitoring. Here, we develop a support vector regression (SVR) model, which uses satellite-derived remote-sensing reflectance spectra (Rrsδ) from Sentinel-2 and Landsat-8 images as input for Chla retrieval in a representative eutrophic prairie lake, Buffalo Pound Lake (BPL), Saskatchewan, Canada. Validated against in situ Chla from seven ice-free seasons (N ∼ 200; 2014–2020), the SVR model outperformed both locally tuned, Rrsδ-fed empirical models (Normalized Difference Chlorophyll Index, 2- and 3-band, and OC3) and Mixture Density Networks (MDNs) by 15–65%, while exhibiting comparable performance to a locally trained MDN, with an error of ∼35%. Comparison of Chla retrieval models, AC processors (iCOR, ACOLITE), and radiometric products (Rayleigh-corrected, surface, and top-of-atmosphere reflectance) showed that the best Chla maps and optimal time series (up to 100 mg m−3) were produced using a coupled SVR-iCOR system.\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2023-01-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/07038992.2023.2215333\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/07038992.2023.2215333","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 1

摘要

由于各种水成分的光学干扰和大气校正过程的不确定性,对内陆小水域近地表叶绿素a (Chla)浓度的远程反演具有挑战性。虽然已经开发了各种算法来从中分辨率地面任务(~ 10-60 m)估计Chla,但事实证明,制作Chla的精确分布图和时间序列具有挑战性,限制了湖泊监测远程分析的使用。本文以加拿大萨斯喀彻温省布法罗Pound湖(BPL)为典型富营养化草原湖泊,利用Sentinel-2和Landsat-8卫星遥感反演光谱(Rrsδ),建立了支持向量回归(SVR)模型。7个无冰季节(N ~ 200;2014-2020), SVR模型的性能优于局部调谐的rsδ馈入经验模型(归一化差异叶绿素指数,2和3波段,OC3)和混合密度网络(MDN) 15-65%,而与局部训练的MDN表现相当,误差约为35%。比较Chla检索模型、AC处理器(iCOR、ACOLITE)和辐射测量产品(瑞利校正、地表和大气顶部反射率)表明,使用耦合SVR-iCOR系统可获得最佳Chla图和最佳时间序列(高达100 mg m - 3)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Comparative Analysis of Empirical and Machine Learning Models for Chla Extraction Using Sentinel-2 and Landsat OLI Data: Opportunities, Limitations, and Challenges
Remote retrieval of near-surface chlorophyll-a (Chla) concentration in small inland waters is challenging due to substantial optical interferences of various water constituents and uncertainties in the atmospheric correction (AC) process. Although various algorithms have been developed to estimate Chla from moderate-resolution terrestrial missions (∼10–60 m), the production of both accurate distribution maps and time series of Chla has proven challenging, limiting the use of remote analyses for lake monitoring. Here, we develop a support vector regression (SVR) model, which uses satellite-derived remote-sensing reflectance spectra (Rrsδ) from Sentinel-2 and Landsat-8 images as input for Chla retrieval in a representative eutrophic prairie lake, Buffalo Pound Lake (BPL), Saskatchewan, Canada. Validated against in situ Chla from seven ice-free seasons (N ∼ 200; 2014–2020), the SVR model outperformed both locally tuned, Rrsδ-fed empirical models (Normalized Difference Chlorophyll Index, 2- and 3-band, and OC3) and Mixture Density Networks (MDNs) by 15–65%, while exhibiting comparable performance to a locally trained MDN, with an error of ∼35%. Comparison of Chla retrieval models, AC processors (iCOR, ACOLITE), and radiometric products (Rayleigh-corrected, surface, and top-of-atmosphere reflectance) showed that the best Chla maps and optimal time series (up to 100 mg m−3) were produced using a coupled SVR-iCOR system.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信