Pour la difference entre deux proportions jumel庆贺庆贺庆贺庆贺庆贺庆贺庆贺庆贺庆贺庆贺庆贺庆贺庆贺庆贺庆贺庆贺庆贺庆贺庆贺庆贺庆贺庆贺庆贺庆贺庆贺庆贺庆贺庆贺庆贺庆贺庆贺庆贺庆贺庆贺庆贺庆贺

IF 1.3
Louis Laurencelle
{"title":"Pour la difference entre deux proportions jumel庆贺庆贺庆贺庆贺庆贺庆贺庆贺庆贺庆贺庆贺庆贺庆贺庆贺庆贺庆贺庆贺庆贺庆贺庆贺庆贺庆贺庆贺庆贺庆贺庆贺庆贺庆贺庆贺庆贺庆贺庆贺庆贺庆贺庆贺庆贺庆贺","authors":"Louis Laurencelle","doi":"10.20982/tqmp.19.3.p254","DOIUrl":null,"url":null,"abstract":"Contrarily to the 6-faced dice or the head/tail coin with their a priori fixed probability values, proportions used in applied research are generally based on heterogeneous and inconstant sources, the mathematical binomial model suiting them only as a first approximation. Moreover, the shape of their distributions is strongly tied to each proportion’s mean value, a fact that rules out a direct binomial calculation for comparing them and assessing their difference. When the compared proportions are paired, i.e. based on the same sources, the awkwardness of the binomial solu-tion simply jumps skyward, their proposed implementations being doubtful and their exegeses war-ped and indirect. Quinn McNemar’s 1947 chi-squared solution, simple and straightforward, has long won users’ adhesion, however it is based on the sole subset of option changing data pairs, putting aside all stable ones. We hereby describe a new, fully documented procedure for testing the difference between two paired proportions. It is anchored on the normal probability model and uses the Fisher-Zubin-Anscombe binomial-to-normal transformation. It is shown to be more precise and more powerful than the previous indirect and convoluted approaches, and it links empirical proportions to the full set of linear variables qualified for standard normal-based analyses, including ANOVA.","PeriodicalId":93055,"journal":{"name":"The quantitative methods for psychology","volume":"42 1","pages":"0"},"PeriodicalIF":1.3000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Pour la différence entre deux proportions jumelées, un nouveau test, plus valide et plus puissant [A new standard normal-based test for the difference between paired proportions to supersede obsolete McNemar-like and other indirect procedures]\",\"authors\":\"Louis Laurencelle\",\"doi\":\"10.20982/tqmp.19.3.p254\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Contrarily to the 6-faced dice or the head/tail coin with their a priori fixed probability values, proportions used in applied research are generally based on heterogeneous and inconstant sources, the mathematical binomial model suiting them only as a first approximation. Moreover, the shape of their distributions is strongly tied to each proportion’s mean value, a fact that rules out a direct binomial calculation for comparing them and assessing their difference. When the compared proportions are paired, i.e. based on the same sources, the awkwardness of the binomial solu-tion simply jumps skyward, their proposed implementations being doubtful and their exegeses war-ped and indirect. Quinn McNemar’s 1947 chi-squared solution, simple and straightforward, has long won users’ adhesion, however it is based on the sole subset of option changing data pairs, putting aside all stable ones. We hereby describe a new, fully documented procedure for testing the difference between two paired proportions. It is anchored on the normal probability model and uses the Fisher-Zubin-Anscombe binomial-to-normal transformation. It is shown to be more precise and more powerful than the previous indirect and convoluted approaches, and it links empirical proportions to the full set of linear variables qualified for standard normal-based analyses, including ANOVA.\",\"PeriodicalId\":93055,\"journal\":{\"name\":\"The quantitative methods for psychology\",\"volume\":\"42 1\",\"pages\":\"0\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2023-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The quantitative methods for psychology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.20982/tqmp.19.3.p254\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The quantitative methods for psychology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.20982/tqmp.19.3.p254","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。
Pour la différence entre deux proportions jumelées, un nouveau test, plus valide et plus puissant [A new standard normal-based test for the difference between paired proportions to supersede obsolete McNemar-like and other indirect procedures]
Contrarily to the 6-faced dice or the head/tail coin with their a priori fixed probability values, proportions used in applied research are generally based on heterogeneous and inconstant sources, the mathematical binomial model suiting them only as a first approximation. Moreover, the shape of their distributions is strongly tied to each proportion’s mean value, a fact that rules out a direct binomial calculation for comparing them and assessing their difference. When the compared proportions are paired, i.e. based on the same sources, the awkwardness of the binomial solu-tion simply jumps skyward, their proposed implementations being doubtful and their exegeses war-ped and indirect. Quinn McNemar’s 1947 chi-squared solution, simple and straightforward, has long won users’ adhesion, however it is based on the sole subset of option changing data pairs, putting aside all stable ones. We hereby describe a new, fully documented procedure for testing the difference between two paired proportions. It is anchored on the normal probability model and uses the Fisher-Zubin-Anscombe binomial-to-normal transformation. It is shown to be more precise and more powerful than the previous indirect and convoluted approaches, and it links empirical proportions to the full set of linear variables qualified for standard normal-based analyses, including ANOVA.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信