求解多集分裂问题的Bregman投影与平行提取方法

Pub Date : 2023-01-01 DOI:10.11650/tjm/230904
Fridoun Moradlou, Zeynab Jouymandi, Fahimeh Akhavan Ghassabzade
{"title":"求解多集分裂问题的Bregman投影与平行提取方法","authors":"Fridoun Moradlou, Zeynab Jouymandi, Fahimeh Akhavan Ghassabzade","doi":"10.11650/tjm/230904","DOIUrl":null,"url":null,"abstract":"In this paper, utilizing Bregman projections which are different from the sunny generalized nonexpansive retractions and generalized metric projection in Banach spaces, we introduce some new parallel extragradient methods for finding the solution of the multiple-sets split equilibrium problem and the solution of the multiple-sets split variational inequality problem in $p$-uniformly convex and uniformly smooth Banach spaces. Moreover, we introduce a $\\Delta$-Lipschitz-type condition on the equilibrium bifunctions to prove strongly convergent of the generated iterates in parallel extragradient methods. To illustrate the usability of our results and also to show the efficiency of the proposed methods, we present some comparative examples with several existing schemes in the literature in finite and infinite dimensional spaces.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bregman Projections and Parallel Extragradient Methods for Solving Multiple-sets Split Problems\",\"authors\":\"Fridoun Moradlou, Zeynab Jouymandi, Fahimeh Akhavan Ghassabzade\",\"doi\":\"10.11650/tjm/230904\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, utilizing Bregman projections which are different from the sunny generalized nonexpansive retractions and generalized metric projection in Banach spaces, we introduce some new parallel extragradient methods for finding the solution of the multiple-sets split equilibrium problem and the solution of the multiple-sets split variational inequality problem in $p$-uniformly convex and uniformly smooth Banach spaces. Moreover, we introduce a $\\\\Delta$-Lipschitz-type condition on the equilibrium bifunctions to prove strongly convergent of the generated iterates in parallel extragradient methods. To illustrate the usability of our results and also to show the efficiency of the proposed methods, we present some comparative examples with several existing schemes in the literature in finite and infinite dimensional spaces.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.11650/tjm/230904\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11650/tjm/230904","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文利用不同于Banach空间中sunny广义非扩张收缩和广义度量投影的Bregman投影,给出了在$p$-一致凸和一致光滑Banach空间中求解多集分裂平衡问题和多集分裂变分不等式问题的几种新的并行外聚方法。此外,我们在平衡双函数上引入了$\Delta$- lipschitz -型条件,证明了并行外聚方法所生成迭代的强收敛性。为了说明我们的结果的可用性以及所提出方法的有效性,我们在有限维和无限维空间中给出了一些与文献中几种现有方案的比较例子。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Bregman Projections and Parallel Extragradient Methods for Solving Multiple-sets Split Problems
In this paper, utilizing Bregman projections which are different from the sunny generalized nonexpansive retractions and generalized metric projection in Banach spaces, we introduce some new parallel extragradient methods for finding the solution of the multiple-sets split equilibrium problem and the solution of the multiple-sets split variational inequality problem in $p$-uniformly convex and uniformly smooth Banach spaces. Moreover, we introduce a $\Delta$-Lipschitz-type condition on the equilibrium bifunctions to prove strongly convergent of the generated iterates in parallel extragradient methods. To illustrate the usability of our results and also to show the efficiency of the proposed methods, we present some comparative examples with several existing schemes in the literature in finite and infinite dimensional spaces.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信