自由半群作用的链递归率和拓扑熵

IF 0.6 4区 数学 Q3 MATHEMATICS
Yanjie Tang, Xiaojiang Ye, Dongkui Ma
{"title":"自由半群作用的链递归率和拓扑熵","authors":"Yanjie Tang, Xiaojiang Ye, Dongkui Ma","doi":"10.11650/tjm/230903","DOIUrl":null,"url":null,"abstract":"In this paper, we first introduce the pseudo-entropy of free semigroup actions and show that it is equal to the topological entropy of free semigroup actions defined by Bufetov [9]. Second, for free semigroup actions, the concepts of chain recurrence and chain recurrence time, chain mixing and chain mixing time are introduced, and upper bounds for these recurrence times are calculated. Furthermore, the lower box dimension and the chain mixing time provide a lower bound on topological entropy of free semigroup actions. Third, the structure of chain transitive systems of free semigroup actions is discussed. Our analysis generalizes the results obtained by Misiurewicz [21], Richeson and Wiseman [23], and Bufetov [9] etc.","PeriodicalId":22176,"journal":{"name":"Taiwanese Journal of Mathematics","volume":"32 1","pages":"0"},"PeriodicalIF":0.6000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Chain Recurrence Rates and Topological Entropy of Free Semigroup Actions\",\"authors\":\"Yanjie Tang, Xiaojiang Ye, Dongkui Ma\",\"doi\":\"10.11650/tjm/230903\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we first introduce the pseudo-entropy of free semigroup actions and show that it is equal to the topological entropy of free semigroup actions defined by Bufetov [9]. Second, for free semigroup actions, the concepts of chain recurrence and chain recurrence time, chain mixing and chain mixing time are introduced, and upper bounds for these recurrence times are calculated. Furthermore, the lower box dimension and the chain mixing time provide a lower bound on topological entropy of free semigroup actions. Third, the structure of chain transitive systems of free semigroup actions is discussed. Our analysis generalizes the results obtained by Misiurewicz [21], Richeson and Wiseman [23], and Bufetov [9] etc.\",\"PeriodicalId\":22176,\"journal\":{\"name\":\"Taiwanese Journal of Mathematics\",\"volume\":\"32 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Taiwanese Journal of Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.11650/tjm/230903\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Taiwanese Journal of Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11650/tjm/230903","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文首先引入自由半群作用的伪熵,并证明它等于Bufetov[9]定义的自由半群作用的拓扑熵。其次,对于自由半群作用,引入了链递归和链递归时间、链混合和链混合时间的概念,并计算了这些递归时间的上界。此外,下盒维数和链混合时间提供了自由半群作用的拓扑熵的下界。第三,讨论了具有自由半群作用的链传递系统的结构。我们的分析概括了Misiurewicz[21]、Richeson和Wiseman[23]、Bufetov[9]等人的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Chain Recurrence Rates and Topological Entropy of Free Semigroup Actions
In this paper, we first introduce the pseudo-entropy of free semigroup actions and show that it is equal to the topological entropy of free semigroup actions defined by Bufetov [9]. Second, for free semigroup actions, the concepts of chain recurrence and chain recurrence time, chain mixing and chain mixing time are introduced, and upper bounds for these recurrence times are calculated. Furthermore, the lower box dimension and the chain mixing time provide a lower bound on topological entropy of free semigroup actions. Third, the structure of chain transitive systems of free semigroup actions is discussed. Our analysis generalizes the results obtained by Misiurewicz [21], Richeson and Wiseman [23], and Bufetov [9] etc.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.10
自引率
0.00%
发文量
35
审稿时长
3 months
期刊介绍: The Taiwanese Journal of Mathematics, published by the Mathematical Society of the Republic of China (Taiwan), is a continuation of the former Chinese Journal of Mathematics (1973-1996). It aims to publish original research papers and survey articles in all areas of mathematics. It will also occasionally publish proceedings of conferences co-organized by the Society. The purpose is to reflect the progress of the mathematical research in Taiwan and, by providing an international forum, to stimulate its further developments. The journal appears bimonthly each year beginning from 2008.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信