具有力学各向异性的垂直流动引起的多孔对流水平边界层的不稳定性

IF 1.4 Q3 ENGINEERING, MECHANICAL
Shamima Islam, Mohammad Ferdows, D. Andrew S. Rees, Andrew P. Bassom
{"title":"具有力学各向异性的垂直流动引起的多孔对流水平边界层的不稳定性","authors":"Shamima Islam, Mohammad Ferdows, D. Andrew S. Rees, Andrew P. Bassom","doi":"10.1615/specialtopicsrevporousmedia.2023048913","DOIUrl":null,"url":null,"abstract":"We consider the Wooding problem, namely the onset of convection in a semi-infinite saturated porous medium with uniform downward suction into a horizontal and uniformly hot bounding surface. In particular we shall begin to examine the stability properties of convection for the case of a mechanically anisotropic porous medium. A linearized stability analysis is performed and the partial differential system of governing equations is transformed into ordinary differential eigenvalue problem for the critical Darcy-Rayleigh number as a function of wave number and the anisotropy ratio, ξ. The eigenvalue problem is solved numerically through the use of the MATLAB routine, BVP4C. Neutral curves are presented and the critical parameters are found as a function of ξ. It is found that both the critical Darcy-Rayleigh and wave numbers decrease with increasing values of ξ. An asymptotic analysis is also presented for ξ ≫ 1.","PeriodicalId":45135,"journal":{"name":"Special Topics & Reviews in Porous Media-An International Journal","volume":"123 1","pages":"0"},"PeriodicalIF":1.4000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"THE INSTABILITY OF POROUS CONVECTIVE HORIZONTAL BOUNDARY LAYER DUE TO A VERTICAL FLOW WITH A MECHANICAL ANISOTROPY\",\"authors\":\"Shamima Islam, Mohammad Ferdows, D. Andrew S. Rees, Andrew P. Bassom\",\"doi\":\"10.1615/specialtopicsrevporousmedia.2023048913\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider the Wooding problem, namely the onset of convection in a semi-infinite saturated porous medium with uniform downward suction into a horizontal and uniformly hot bounding surface. In particular we shall begin to examine the stability properties of convection for the case of a mechanically anisotropic porous medium. A linearized stability analysis is performed and the partial differential system of governing equations is transformed into ordinary differential eigenvalue problem for the critical Darcy-Rayleigh number as a function of wave number and the anisotropy ratio, ξ. The eigenvalue problem is solved numerically through the use of the MATLAB routine, BVP4C. Neutral curves are presented and the critical parameters are found as a function of ξ. It is found that both the critical Darcy-Rayleigh and wave numbers decrease with increasing values of ξ. An asymptotic analysis is also presented for ξ ≫ 1.\",\"PeriodicalId\":45135,\"journal\":{\"name\":\"Special Topics & Reviews in Porous Media-An International Journal\",\"volume\":\"123 1\",\"pages\":\"0\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Special Topics & Reviews in Porous Media-An International Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1615/specialtopicsrevporousmedia.2023048913\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Special Topics & Reviews in Porous Media-An International Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1615/specialtopicsrevporousmedia.2023048913","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

摘要

我们考虑Wooding问题,即在具有均匀向下吸力的半无限饱和多孔介质中对流开始进入水平和均匀热的边界表面。特别地,我们将开始研究力学各向异性多孔介质情况下对流的稳定性。对控制方程的偏微分系统进行了线性化的稳定性分析,并将其转化为临界达西-瑞利数与波数和各向异性比ξ的函数的常微分特征值问题。利用MATLAB程序BVP4C对特征值问题进行了数值求解。给出了中性曲线,并找到了作为ξ函数的关键参数。发现随着ξ值的增大,临界达西-瑞利波数和波数均减小。对ξ≠1也给出了渐近分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
THE INSTABILITY OF POROUS CONVECTIVE HORIZONTAL BOUNDARY LAYER DUE TO A VERTICAL FLOW WITH A MECHANICAL ANISOTROPY
We consider the Wooding problem, namely the onset of convection in a semi-infinite saturated porous medium with uniform downward suction into a horizontal and uniformly hot bounding surface. In particular we shall begin to examine the stability properties of convection for the case of a mechanically anisotropic porous medium. A linearized stability analysis is performed and the partial differential system of governing equations is transformed into ordinary differential eigenvalue problem for the critical Darcy-Rayleigh number as a function of wave number and the anisotropy ratio, ξ. The eigenvalue problem is solved numerically through the use of the MATLAB routine, BVP4C. Neutral curves are presented and the critical parameters are found as a function of ξ. It is found that both the critical Darcy-Rayleigh and wave numbers decrease with increasing values of ξ. An asymptotic analysis is also presented for ξ ≫ 1.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.00
自引率
0.00%
发文量
21
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信