基于CNN-BiGRU融合模型和TPE优化的锂离子电池剩余使用寿命间接预测

IF 1.8 Q4 ENERGY & FUELS
AIMS Energy Pub Date : 2023-01-01 DOI:10.3934/energy.2023043
Xiaoyu Zheng, Dewang Chen, Yusheng Wang, Liping Zhuang
{"title":"基于CNN-BiGRU融合模型和TPE优化的锂离子电池剩余使用寿命间接预测","authors":"Xiaoyu Zheng, Dewang Chen, Yusheng Wang, Liping Zhuang","doi":"10.3934/energy.2023043","DOIUrl":null,"url":null,"abstract":"<abstract><p>The performance of lithium-ion batteries declines rapidly over time, inducing anxiety in their usage. Ascertaining the capacity of these batteries is difficult to measure directly during online remaining useful life (RUL) prediction, and a single deep learning model falls short of accuracy and applicability in RUL predictive analysis. Hence, this study proposes a lithium-ion battery RUL indirect prediction model, fusing convolutional neural networks and bidirectional gated recurrent units (CNN-BiGRU). The analysis of characteristic parameters of battery life status reveals the selection of pressure discharge time, average discharge voltage and average temperature as health factors of lithium-ion batteries. Following this, a CNN-BiGRU model for lithium-ion battery RUL indirect prediction is established, and the Tree-structured Parzen Estimator (TPE) adaptive hyperparameter optimization method is used for CNN-BiGRU model hyperparameter optimization. Overall, comparison experiments on single-model and other fusion models demonstrate our proposed model's superiority in the prediction of RUL in terms of stability and accuracy.</p> </abstract>","PeriodicalId":45696,"journal":{"name":"AIMS Energy","volume":"23 1","pages":"0"},"PeriodicalIF":1.8000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Remaining useful life indirect prediction of lithium-ion batteries using CNN-BiGRU fusion model and TPE optimization\",\"authors\":\"Xiaoyu Zheng, Dewang Chen, Yusheng Wang, Liping Zhuang\",\"doi\":\"10.3934/energy.2023043\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<abstract><p>The performance of lithium-ion batteries declines rapidly over time, inducing anxiety in their usage. Ascertaining the capacity of these batteries is difficult to measure directly during online remaining useful life (RUL) prediction, and a single deep learning model falls short of accuracy and applicability in RUL predictive analysis. Hence, this study proposes a lithium-ion battery RUL indirect prediction model, fusing convolutional neural networks and bidirectional gated recurrent units (CNN-BiGRU). The analysis of characteristic parameters of battery life status reveals the selection of pressure discharge time, average discharge voltage and average temperature as health factors of lithium-ion batteries. Following this, a CNN-BiGRU model for lithium-ion battery RUL indirect prediction is established, and the Tree-structured Parzen Estimator (TPE) adaptive hyperparameter optimization method is used for CNN-BiGRU model hyperparameter optimization. Overall, comparison experiments on single-model and other fusion models demonstrate our proposed model's superiority in the prediction of RUL in terms of stability and accuracy.</p> </abstract>\",\"PeriodicalId\":45696,\"journal\":{\"name\":\"AIMS Energy\",\"volume\":\"23 1\",\"pages\":\"0\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"AIMS Energy\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3934/energy.2023043\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"AIMS Energy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3934/energy.2023043","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

摘要

<abstract>< >随着时间的推移,锂离子电池的性能迅速下降,在使用中引起焦虑。在在线剩余使用寿命(RUL)预测中,很难直接测量这些电池的容量,单一的深度学习模型在RUL预测分析中缺乏准确性和适用性。因此,本研究提出了一种融合卷积神经网络和双向门控循环单元(CNN-BiGRU)的锂离子电池RUL间接预测模型。通过对电池寿命状态特征参数的分析,选择压力放电时间、平均放电电压和平均温度作为锂离子电池的健康因素。在此基础上,建立了用于锂离子电池RUL间接预测的CNN-BiGRU模型,并采用树结构Parzen Estimator (TPE)自适应超参数优化方法对CNN-BiGRU模型进行了超参数优化。总体而言,单模型和其他融合模型的对比实验表明,我们提出的模型在预测RUL的稳定性和准确性方面具有优势。& lt; / abstract>
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Remaining useful life indirect prediction of lithium-ion batteries using CNN-BiGRU fusion model and TPE optimization

The performance of lithium-ion batteries declines rapidly over time, inducing anxiety in their usage. Ascertaining the capacity of these batteries is difficult to measure directly during online remaining useful life (RUL) prediction, and a single deep learning model falls short of accuracy and applicability in RUL predictive analysis. Hence, this study proposes a lithium-ion battery RUL indirect prediction model, fusing convolutional neural networks and bidirectional gated recurrent units (CNN-BiGRU). The analysis of characteristic parameters of battery life status reveals the selection of pressure discharge time, average discharge voltage and average temperature as health factors of lithium-ion batteries. Following this, a CNN-BiGRU model for lithium-ion battery RUL indirect prediction is established, and the Tree-structured Parzen Estimator (TPE) adaptive hyperparameter optimization method is used for CNN-BiGRU model hyperparameter optimization. Overall, comparison experiments on single-model and other fusion models demonstrate our proposed model's superiority in the prediction of RUL in terms of stability and accuracy.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
AIMS Energy
AIMS Energy ENERGY & FUELS-
CiteScore
3.80
自引率
11.10%
发文量
34
审稿时长
12 weeks
期刊介绍: AIMS Energy is an international Open Access journal devoted to publishing peer-reviewed, high quality, original papers in the field of Energy technology and science. We publish the following article types: original research articles, reviews, editorials, letters, and conference reports. AIMS Energy welcomes, but not limited to, the papers from the following topics: · Alternative energy · Bioenergy · Biofuel · Energy conversion · Energy conservation · Energy transformation · Future energy development · Green energy · Power harvesting · Renewable energy
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信