{"title":"导热可压缩向列液晶系统的全局小解:尺度不变量上的小","authors":"Jinkai Li, Qiang Tao","doi":"10.4310/cms.2023.v21.n6.a1","DOIUrl":null,"url":null,"abstract":"In this paper, we consider the Cauchy problem to the three dimensional heat conducting compressible nematic liquid crystal system in the presence of vacuum and with vacuum far fields. Global well-posedness of strong solutions is established under the condition that the scaling invariant quantity $ (\\|\\rho_0\\|_\\infty+1)\\big[\\|\\rho_0\\|_3+(\\|\\rho_0\\|_\\infty+1)^2(\\|\\sqrt{\\rho_0}u_0\\|_2^2+ \\|\\nabla d_0\\|_2^2)\\big] \\big[\\|\\nabla u_0\\|_2^2+(\\|\\rho_0\\|_\\infty+1)(\\|\\sqrt{\\rho_0}E_0\\|_2^2 + \\|\\nabla^2 d_0\\|_2^2)\\big]$ is sufficiently small with the smallness depending only on the parameters appeared in the system.","PeriodicalId":50659,"journal":{"name":"Communications in Mathematical Sciences","volume":"44 1","pages":"0"},"PeriodicalIF":1.2000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Global small solutions to heat conductive compressible nematic liquid crystal system: smallness on a scaling invariant quantity\",\"authors\":\"Jinkai Li, Qiang Tao\",\"doi\":\"10.4310/cms.2023.v21.n6.a1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we consider the Cauchy problem to the three dimensional heat conducting compressible nematic liquid crystal system in the presence of vacuum and with vacuum far fields. Global well-posedness of strong solutions is established under the condition that the scaling invariant quantity $ (\\\\|\\\\rho_0\\\\|_\\\\infty+1)\\\\big[\\\\|\\\\rho_0\\\\|_3+(\\\\|\\\\rho_0\\\\|_\\\\infty+1)^2(\\\\|\\\\sqrt{\\\\rho_0}u_0\\\\|_2^2+ \\\\|\\\\nabla d_0\\\\|_2^2)\\\\big] \\\\big[\\\\|\\\\nabla u_0\\\\|_2^2+(\\\\|\\\\rho_0\\\\|_\\\\infty+1)(\\\\|\\\\sqrt{\\\\rho_0}E_0\\\\|_2^2 + \\\\|\\\\nabla^2 d_0\\\\|_2^2)\\\\big]$ is sufficiently small with the smallness depending only on the parameters appeared in the system.\",\"PeriodicalId\":50659,\"journal\":{\"name\":\"Communications in Mathematical Sciences\",\"volume\":\"44 1\",\"pages\":\"0\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications in Mathematical Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4310/cms.2023.v21.n6.a1\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Mathematical Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4310/cms.2023.v21.n6.a1","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
Global small solutions to heat conductive compressible nematic liquid crystal system: smallness on a scaling invariant quantity
In this paper, we consider the Cauchy problem to the three dimensional heat conducting compressible nematic liquid crystal system in the presence of vacuum and with vacuum far fields. Global well-posedness of strong solutions is established under the condition that the scaling invariant quantity $ (\|\rho_0\|_\infty+1)\big[\|\rho_0\|_3+(\|\rho_0\|_\infty+1)^2(\|\sqrt{\rho_0}u_0\|_2^2+ \|\nabla d_0\|_2^2)\big] \big[\|\nabla u_0\|_2^2+(\|\rho_0\|_\infty+1)(\|\sqrt{\rho_0}E_0\|_2^2 + \|\nabla^2 d_0\|_2^2)\big]$ is sufficiently small with the smallness depending only on the parameters appeared in the system.
期刊介绍:
Covers modern applied mathematics in the fields of modeling, applied and stochastic analyses and numerical computations—on problems that arise in physical, biological, engineering, and financial applications. The journal publishes high-quality, original research articles, reviews, and expository papers.