带反传播流的聚焦Hirota方程的Riemann-Hilbert问题

IF 1.2 4区 数学 Q2 MATHEMATICS, APPLIED
Xiao-Fan Zhang, Shou-Fu Tian, Jin-Jie Yang, Zhi-Qiang Li
{"title":"带反传播流的聚焦Hirota方程的Riemann-Hilbert问题","authors":"Xiao-Fan Zhang, Shou-Fu Tian, Jin-Jie Yang, Zhi-Qiang Li","doi":"10.4310/cms.2023.v21.n6.a9","DOIUrl":null,"url":null,"abstract":". The focusing Hirota equation is analyzed with a general initial condition via the inverse scattering transform, whose asymptotic behavior at infinity consists of counterpropagating waves. According to some necessary conditions, including jump condition, normalization condition, residue conditions and suitable growth condition near the branch points, the inverse problem is transformed into a matrix Riemann-Hilbert (RH) problem jumping along the branch cuts and real axis, the problem is transformed into a set of linear algebraic integral equations, and the reconstruction formula of potential is successfully obtained. In addition, the zero point of the analytical scattering coefficient on the continuous spectrum is placed on a sufficiently large circle, so a modified piecewise analytical RH problem is further successfully constructed. Finally, the exact expressions of soliton solution and breathing solution of focusing Hirota equation under degenerate initial value conditions are discussed.","PeriodicalId":50659,"journal":{"name":"Communications in Mathematical Sciences","volume":"81 1","pages":"0"},"PeriodicalIF":1.2000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Riemann–Hilbert problem for the focusing Hirota equation with counterpropagating flows\",\"authors\":\"Xiao-Fan Zhang, Shou-Fu Tian, Jin-Jie Yang, Zhi-Qiang Li\",\"doi\":\"10.4310/cms.2023.v21.n6.a9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\". The focusing Hirota equation is analyzed with a general initial condition via the inverse scattering transform, whose asymptotic behavior at infinity consists of counterpropagating waves. According to some necessary conditions, including jump condition, normalization condition, residue conditions and suitable growth condition near the branch points, the inverse problem is transformed into a matrix Riemann-Hilbert (RH) problem jumping along the branch cuts and real axis, the problem is transformed into a set of linear algebraic integral equations, and the reconstruction formula of potential is successfully obtained. In addition, the zero point of the analytical scattering coefficient on the continuous spectrum is placed on a sufficiently large circle, so a modified piecewise analytical RH problem is further successfully constructed. Finally, the exact expressions of soliton solution and breathing solution of focusing Hirota equation under degenerate initial value conditions are discussed.\",\"PeriodicalId\":50659,\"journal\":{\"name\":\"Communications in Mathematical Sciences\",\"volume\":\"81 1\",\"pages\":\"0\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications in Mathematical Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4310/cms.2023.v21.n6.a9\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Mathematical Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4310/cms.2023.v21.n6.a9","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。
Riemann–Hilbert problem for the focusing Hirota equation with counterpropagating flows
. The focusing Hirota equation is analyzed with a general initial condition via the inverse scattering transform, whose asymptotic behavior at infinity consists of counterpropagating waves. According to some necessary conditions, including jump condition, normalization condition, residue conditions and suitable growth condition near the branch points, the inverse problem is transformed into a matrix Riemann-Hilbert (RH) problem jumping along the branch cuts and real axis, the problem is transformed into a set of linear algebraic integral equations, and the reconstruction formula of potential is successfully obtained. In addition, the zero point of the analytical scattering coefficient on the continuous spectrum is placed on a sufficiently large circle, so a modified piecewise analytical RH problem is further successfully constructed. Finally, the exact expressions of soliton solution and breathing solution of focusing Hirota equation under degenerate initial value conditions are discussed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.70
自引率
10.00%
发文量
59
审稿时长
6 months
期刊介绍: Covers modern applied mathematics in the fields of modeling, applied and stochastic analyses and numerical computations—on problems that arise in physical, biological, engineering, and financial applications. The journal publishes high-quality, original research articles, reviews, and expository papers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信