{"title":"一类四阶非线性微分方程具有可动奇点的数学模型的研究","authors":"M. V. Gasanov, A. G. Gulkanov","doi":"10.20537/nd230904","DOIUrl":null,"url":null,"abstract":"This article introduces a mathematical model that utilizes a nonlinear differential equation to study a range of phenomena such as nonlinear wave processes, and beam deflections. Solving this equation is challenging due to the presence of moving singular points. The article addresses two main problems: first, it establishes the existence and uniqueness of the solution of the equation and, second, it provides precise criteria for determining the existence of a moving singular point. Additionally, the article presents estimates of the error in the analytical approximate solution and validates the results through a numerical experiment.","PeriodicalId":36803,"journal":{"name":"Russian Journal of Nonlinear Dynamics","volume":"62 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Study of a Mathematical Model with a Movable Singular Point in a Fourth-Order Nonlinear Differential Equation\",\"authors\":\"M. V. Gasanov, A. G. Gulkanov\",\"doi\":\"10.20537/nd230904\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This article introduces a mathematical model that utilizes a nonlinear differential equation to study a range of phenomena such as nonlinear wave processes, and beam deflections. Solving this equation is challenging due to the presence of moving singular points. The article addresses two main problems: first, it establishes the existence and uniqueness of the solution of the equation and, second, it provides precise criteria for determining the existence of a moving singular point. Additionally, the article presents estimates of the error in the analytical approximate solution and validates the results through a numerical experiment.\",\"PeriodicalId\":36803,\"journal\":{\"name\":\"Russian Journal of Nonlinear Dynamics\",\"volume\":\"62 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Russian Journal of Nonlinear Dynamics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.20537/nd230904\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Russian Journal of Nonlinear Dynamics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.20537/nd230904","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
A Study of a Mathematical Model with a Movable Singular Point in a Fourth-Order Nonlinear Differential Equation
This article introduces a mathematical model that utilizes a nonlinear differential equation to study a range of phenomena such as nonlinear wave processes, and beam deflections. Solving this equation is challenging due to the presence of moving singular points. The article addresses two main problems: first, it establishes the existence and uniqueness of the solution of the equation and, second, it provides precise criteria for determining the existence of a moving singular point. Additionally, the article presents estimates of the error in the analytical approximate solution and validates the results through a numerical experiment.