自由群中的换向子长度

Pub Date : 2023-10-03 DOI:10.4171/ggd/747
Laurent Bartholdi, Danil Fialkovski, Sergei O. Ivanov
{"title":"自由群中的换向子长度","authors":"Laurent Bartholdi, Danil Fialkovski, Sergei O. Ivanov","doi":"10.4171/ggd/747","DOIUrl":null,"url":null,"abstract":"Let $F$ be a free group. We present for arbitrary $g\\in\\mathbb{N}$ a \\textsc{LogSpace} (and thus polynomial time) algorithm that determines whether a given $w\\in F$ is a product of at most $g$ commutators; and more generally, an algorithm that determines, given $w\\in F$, the minimal $g$ such that $w$ may be written as a product of $g$ commutators (and returns $\\infty$ if no such $g$ exists). This algorithm also returns words $x\\_1,y\\_1,\\dots,x\\_g,y\\_g$ such that $w=\\[x\\_1,y\\_1]\\dots\\[x\\_g,y\\_g]$. These algorithms are also efficient in practice. Using them, we produce the first example of a word in the free group whose commutator length decreases under taking a square. This disproves in a very strong sense a\\~conjecture by Bardakov.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"On commutator length in free groups\",\"authors\":\"Laurent Bartholdi, Danil Fialkovski, Sergei O. Ivanov\",\"doi\":\"10.4171/ggd/747\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let $F$ be a free group. We present for arbitrary $g\\\\in\\\\mathbb{N}$ a \\\\textsc{LogSpace} (and thus polynomial time) algorithm that determines whether a given $w\\\\in F$ is a product of at most $g$ commutators; and more generally, an algorithm that determines, given $w\\\\in F$, the minimal $g$ such that $w$ may be written as a product of $g$ commutators (and returns $\\\\infty$ if no such $g$ exists). This algorithm also returns words $x\\\\_1,y\\\\_1,\\\\dots,x\\\\_g,y\\\\_g$ such that $w=\\\\[x\\\\_1,y\\\\_1]\\\\dots\\\\[x\\\\_g,y\\\\_g]$. These algorithms are also efficient in practice. Using them, we produce the first example of a word in the free group whose commutator length decreases under taking a square. This disproves in a very strong sense a\\\\~conjecture by Bardakov.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2023-10-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4171/ggd/747\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4171/ggd/747","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

让$F$成为一个自由的群组。对于任意的$g\in\mathbb{N}$,我们提出了一个\textsc{LogSpace}(也就是多项式时间)算法来确定给定的$w\in F$是否是最多$g$个换向子的乘积;更一般地说,是一种算法,给定$w\in F$,它确定最小的$g$,使得$w$可以写成$g$换向子的乘积(如果不存在这样的$g$,则返回$\infty$)。该算法还返回$x\_1,y\_1,\dots,x\_g,y\_g$这样的单词$w=\[x\_1,y\_1]\dots\[x\_g,y\_g]$。这些算法在实践中也很有效。利用它们,我们给出了自由群中换向子长度在取平方后减小的第一个例子。这在很大程度上否定了Bardakov的猜想。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
On commutator length in free groups
Let $F$ be a free group. We present for arbitrary $g\in\mathbb{N}$ a \textsc{LogSpace} (and thus polynomial time) algorithm that determines whether a given $w\in F$ is a product of at most $g$ commutators; and more generally, an algorithm that determines, given $w\in F$, the minimal $g$ such that $w$ may be written as a product of $g$ commutators (and returns $\infty$ if no such $g$ exists). This algorithm also returns words $x\_1,y\_1,\dots,x\_g,y\_g$ such that $w=\[x\_1,y\_1]\dots\[x\_g,y\_g]$. These algorithms are also efficient in practice. Using them, we produce the first example of a word in the free group whose commutator length decreases under taking a square. This disproves in a very strong sense a\~conjecture by Bardakov.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信