稳定余维数为1的积分变形的结构理论及其在极小化超曲面上的应用[m]𝑝

IF 3.5 1区 数学 Q1 MATHEMATICS
Paul Minter, Neshan Wickramasekera
{"title":"稳定余维数为1的积分变形的结构理论及其在极小化超曲面上的应用[m]𝑝","authors":"Paul Minter, Neshan Wickramasekera","doi":"10.1090/jams/1032","DOIUrl":null,"url":null,"abstract":"For any <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper Q element-of StartSet three halves comma 2 comma five halves comma 3 comma ellipsis EndSet\"> <mml:semantics> <mml:mrow> <mml:mi>Q</mml:mi> <mml:mo>∈<!-- ∈ --></mml:mo> <mml:mo fence=\"false\" stretchy=\"false\">{</mml:mo> <mml:mfrac> <mml:mn>3</mml:mn> <mml:mn>2</mml:mn> </mml:mfrac> <mml:mo>,</mml:mo> <mml:mn>2</mml:mn> <mml:mo>,</mml:mo> <mml:mfrac> <mml:mn>5</mml:mn> <mml:mn>2</mml:mn> </mml:mfrac> <mml:mo>,</mml:mo> <mml:mn>3</mml:mn> <mml:mo>,</mml:mo> <mml:mo>…<!-- … --></mml:mo> <mml:mo fence=\"false\" stretchy=\"false\">}</mml:mo> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">Q\\in \\{\\frac {3}{2},2,\\frac {5}{2},3,\\dotsc \\}</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, we establish a structure theory for the class <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"script upper S Subscript upper Q\"> <mml:semantics> <mml:msub> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mi class=\"MJX-tex-caligraphic\" mathvariant=\"script\">S</mml:mi> </mml:mrow> <mml:mi>Q</mml:mi> </mml:msub> <mml:annotation encoding=\"application/x-tex\">\\mathcal {S}_Q</mml:annotation> </mml:semantics> </mml:math> </inline-formula> of stable codimension 1 stationary integral varifolds admitting no classical singularities of density <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"greater-than upper Q\"> <mml:semantics> <mml:mrow> <mml:mo>&gt;</mml:mo> <mml:mi>Q</mml:mi> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">&gt;Q</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. This theory comprises three main theorems which describe the nature of a varifold <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper V element-of script upper S Subscript upper Q\"> <mml:semantics> <mml:mrow> <mml:mi>V</mml:mi> <mml:mo>∈<!-- ∈ --></mml:mo> <mml:msub> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mi class=\"MJX-tex-caligraphic\" mathvariant=\"script\">S</mml:mi> </mml:mrow> <mml:mi>Q</mml:mi> </mml:msub> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">V\\in \\mathcal {S}_Q</mml:annotation> </mml:semantics> </mml:math> </inline-formula> when: (i) <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper V\"> <mml:semantics> <mml:mi>V</mml:mi> <mml:annotation encoding=\"application/x-tex\">V</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is close to a flat disk of multiplicity <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper Q\"> <mml:semantics> <mml:mi>Q</mml:mi> <mml:annotation encoding=\"application/x-tex\">Q</mml:annotation> </mml:semantics> </mml:math> </inline-formula> (for integer <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper Q\"> <mml:semantics> <mml:mi>Q</mml:mi> <mml:annotation encoding=\"application/x-tex\">Q</mml:annotation> </mml:semantics> </mml:math> </inline-formula>); (ii) <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper V\"> <mml:semantics> <mml:mi>V</mml:mi> <mml:annotation encoding=\"application/x-tex\">V</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is close to a flat disk of integer multiplicity <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"greater-than upper Q\"> <mml:semantics> <mml:mrow> <mml:mo>&gt;</mml:mo> <mml:mi>Q</mml:mi> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">&gt;Q</mml:annotation> </mml:semantics> </mml:math> </inline-formula>; and (iii) <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper V\"> <mml:semantics> <mml:mi>V</mml:mi> <mml:annotation encoding=\"application/x-tex\">V</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is close to a stationary cone with vertex density <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper Q\"> <mml:semantics> <mml:mi>Q</mml:mi> <mml:annotation encoding=\"application/x-tex\">Q</mml:annotation> </mml:semantics> </mml:math> </inline-formula> and supports the union of 3 or more half-hyperplanes meeting along a common axis. The main new result concerns (i) and gives in particular a description of <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper V element-of script upper S Subscript upper Q\"> <mml:semantics> <mml:mrow> <mml:mi>V</mml:mi> <mml:mo>∈<!-- ∈ --></mml:mo> <mml:msub> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mi class=\"MJX-tex-caligraphic\" mathvariant=\"script\">S</mml:mi> </mml:mrow> <mml:mi>Q</mml:mi> </mml:msub> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">V\\in \\mathcal {S}_Q</mml:annotation> </mml:semantics> </mml:math> </inline-formula> near branch points of density <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper Q\"> <mml:semantics> <mml:mi>Q</mml:mi> <mml:annotation encoding=\"application/x-tex\">Q</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. Results concerning (ii) and (iii) directly follow from parts of previous work of the second author [Ann. of Math. (2) 179 (2014), pp. 843–1007]. These three theorems, taken with <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper Q equals p slash 2\"> <mml:semantics> <mml:mrow> <mml:mi>Q</mml:mi> <mml:mo>=</mml:mo> <mml:mi>p</mml:mi> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mo>/</mml:mo> </mml:mrow> <mml:mn>2</mml:mn> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">Q=p/2</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, are readily applicable to codimension 1 rectifiable area minimising currents mod <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"p\"> <mml:semantics> <mml:mi>p</mml:mi> <mml:annotation encoding=\"application/x-tex\">p</mml:annotation> </mml:semantics> </mml:math> </inline-formula> for any integer <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"p greater-than-or-equal-to 2\"> <mml:semantics> <mml:mrow> <mml:mi>p</mml:mi> <mml:mo>≥<!-- ≥ --></mml:mo> <mml:mn>2</mml:mn> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">p\\geq 2</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, establishing local structure properties of such a current <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper T\"> <mml:semantics> <mml:mi>T</mml:mi> <mml:annotation encoding=\"application/x-tex\">T</mml:annotation> </mml:semantics> </mml:math> </inline-formula> as consequences of little, readily checked, information. Specifically, applying case (i) it follows that, for even <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"p\"> <mml:semantics> <mml:mi>p</mml:mi> <mml:annotation encoding=\"application/x-tex\">p</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, if <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper T\"> <mml:semantics> <mml:mi>T</mml:mi> <mml:annotation encoding=\"application/x-tex\">T</mml:annotation> </mml:semantics> </mml:math> </inline-formula> has one tangent cone at an interior point <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"y\"> <mml:semantics> <mml:mi>y</mml:mi> <mml:annotation encoding=\"application/x-tex\">y</mml:annotation> </mml:semantics> </mml:math> </inline-formula> equal to an (oriented) hyperplane <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper P\"> <mml:semantics> <mml:mi>P</mml:mi> <mml:annotation encoding=\"application/x-tex\">P</mml:annotation> </mml:semantics> </mml:math> </inline-formula> of multiplicity <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"p slash 2\"> <mml:semantics> <mml:mrow> <mml:mi>p</mml:mi> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mo>/</mml:mo> </mml:mrow> <mml:mn>2</mml:mn> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">p/2</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, then <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper P\"> <mml:semantics> <mml:mi>P</mml:mi> <mml:annotation encoding=\"application/x-tex\">P</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is the unique tangent cone at <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"y\"> <mml:semantics> <mml:mi>y</mml:mi> <mml:annotation encoding=\"application/x-tex\">y</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, and <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper T\"> <mml:semantics> <mml:mi>T</mml:mi> <mml:annotation encoding=\"application/x-tex\">T</mml:annotation> </mml:semantics> </mml:math> </inline-formula> near <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"y\"> <mml:semantics> <mml:mi>y</mml:mi> <mml:annotation encoding=\"application/x-tex\">y</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is given by the graph of a <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"StartFraction p Over 2 EndFraction\"> <mml:semantics> <mml:mfrac> <mml:mi>p</mml:mi> <mml:mn>2</mml:mn> </mml:mfrac> <mml:annotation encoding=\"application/x-tex\">\\frac {p}{2}</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-valued function with <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper C Superscript 1 comma alpha\"> <mml:semantics> <mml:msup> <mml:mi>C</mml:mi> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mn>1</mml:mn> <mml:mo>,</mml:mo> <mml:mi>α<!-- α --></mml:mi> </mml:mrow> </mml:msup> <mml:annotation encoding=\"application/x-tex\">C^{1,\\alpha }</mml:annotation> </mml:semantics> </mml:math> </inline-formula> regularity in a certain generalised sense. This settles a basic remaining open question in the study of the local structure of such currents near points with planar tangent cones, extending the cases <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"p equals 2\"> <mml:semantics> <mml:mrow> <mml:mi>p</mml:mi> <mml:mo>=</mml:mo> <mml:mn>2</mml:mn> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">p=2</mml:annotation> </mml:semantics> </mml:math> </inline-formula> and <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"p equals 4\"> <mml:semantics> <mml:mrow> <mml:mi>p</mml:mi> <mml:mo>=</mml:mo> <mml:mn>4</mml:mn> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">p=4</mml:annotation> </mml:semantics> </mml:math> </inline-formula> of the result which have been known since the 1970’s from the De Giorgi–Allard regularity theory [Ann. of Math. (2) 95 (1972), pp. 417–491] [<italic>Frontiere orientate di misura minima</italic>, Editrice Tecnico Scientifica, Pisa, 1961] and the structure theory of White [Invent. Math. 53 (1979), pp. 45–58] respectively. If <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper P\"> <mml:semantics> <mml:mi>P</mml:mi> <mml:annotation encoding=\"application/x-tex\">P</mml:annotation> </mml:semantics> </mml:math> </inline-formula> has multiplicity <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"greater-than p slash 2\"> <mml:semantics> <mml:mrow> <mml:mo>&gt;</mml:mo> <mml:mi>p</mml:mi> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mo>/</mml:mo> </mml:mrow> <mml:mn>2</mml:mn> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">&gt; p/2</mml:annotation> </mml:semantics> </mml:math> </inline-formula> (for <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"p\"> <mml:semantics> <mml:mi>p</mml:mi> <mml:annotation encoding=\"application/x-tex\">p</mml:annotation> </mml:semantics> </mml:math> </inline-formula> even or odd), it follows from case (ii) that <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper T\"> <mml:semantics> <mml:mi>T</mml:mi> <mml:annotation encoding=\"application/x-tex\">T</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is smoothly embedded near <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"y\"> <mml:semantics> <mml:mi>y</mml:mi> <mml:annotation encoding=\"application/x-tex\">y</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, recovering a second well-known theorem of White [<italic>Proc. Sympos. Pure Math.</italic>, Amer. Math. Soc., Providence, RI, 1986, pp. 413–427]. Finally, the main structure results obtained recently by De Lellis–Hirsch–Marchese–Spolaor–Stuvard [arXiv:2105.08135, 2021] for such currents <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper T\"> <mml:semantics> <mml:mi>T</mml:mi> <mml:annotation encoding=\"application/x-tex\">T</mml:annotation> </mml:semantics> </mml:math> </inline-formula> all follow from case (iii).","PeriodicalId":54764,"journal":{"name":"Journal of the American Mathematical Society","volume":"50 1","pages":"0"},"PeriodicalIF":3.5000,"publicationDate":"2023-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"A structure theory for stable codimension 1 integral varifolds with applications to area minimising hypersurfaces mod 𝑝\",\"authors\":\"Paul Minter, Neshan Wickramasekera\",\"doi\":\"10.1090/jams/1032\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For any <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper Q element-of StartSet three halves comma 2 comma five halves comma 3 comma ellipsis EndSet\\\"> <mml:semantics> <mml:mrow> <mml:mi>Q</mml:mi> <mml:mo>∈<!-- ∈ --></mml:mo> <mml:mo fence=\\\"false\\\" stretchy=\\\"false\\\">{</mml:mo> <mml:mfrac> <mml:mn>3</mml:mn> <mml:mn>2</mml:mn> </mml:mfrac> <mml:mo>,</mml:mo> <mml:mn>2</mml:mn> <mml:mo>,</mml:mo> <mml:mfrac> <mml:mn>5</mml:mn> <mml:mn>2</mml:mn> </mml:mfrac> <mml:mo>,</mml:mo> <mml:mn>3</mml:mn> <mml:mo>,</mml:mo> <mml:mo>…<!-- … --></mml:mo> <mml:mo fence=\\\"false\\\" stretchy=\\\"false\\\">}</mml:mo> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">Q\\\\in \\\\{\\\\frac {3}{2},2,\\\\frac {5}{2},3,\\\\dotsc \\\\}</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, we establish a structure theory for the class <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"script upper S Subscript upper Q\\\"> <mml:semantics> <mml:msub> <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\"> <mml:mi class=\\\"MJX-tex-caligraphic\\\" mathvariant=\\\"script\\\">S</mml:mi> </mml:mrow> <mml:mi>Q</mml:mi> </mml:msub> <mml:annotation encoding=\\\"application/x-tex\\\">\\\\mathcal {S}_Q</mml:annotation> </mml:semantics> </mml:math> </inline-formula> of stable codimension 1 stationary integral varifolds admitting no classical singularities of density <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"greater-than upper Q\\\"> <mml:semantics> <mml:mrow> <mml:mo>&gt;</mml:mo> <mml:mi>Q</mml:mi> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">&gt;Q</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. This theory comprises three main theorems which describe the nature of a varifold <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper V element-of script upper S Subscript upper Q\\\"> <mml:semantics> <mml:mrow> <mml:mi>V</mml:mi> <mml:mo>∈<!-- ∈ --></mml:mo> <mml:msub> <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\"> <mml:mi class=\\\"MJX-tex-caligraphic\\\" mathvariant=\\\"script\\\">S</mml:mi> </mml:mrow> <mml:mi>Q</mml:mi> </mml:msub> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">V\\\\in \\\\mathcal {S}_Q</mml:annotation> </mml:semantics> </mml:math> </inline-formula> when: (i) <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper V\\\"> <mml:semantics> <mml:mi>V</mml:mi> <mml:annotation encoding=\\\"application/x-tex\\\">V</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is close to a flat disk of multiplicity <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper Q\\\"> <mml:semantics> <mml:mi>Q</mml:mi> <mml:annotation encoding=\\\"application/x-tex\\\">Q</mml:annotation> </mml:semantics> </mml:math> </inline-formula> (for integer <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper Q\\\"> <mml:semantics> <mml:mi>Q</mml:mi> <mml:annotation encoding=\\\"application/x-tex\\\">Q</mml:annotation> </mml:semantics> </mml:math> </inline-formula>); (ii) <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper V\\\"> <mml:semantics> <mml:mi>V</mml:mi> <mml:annotation encoding=\\\"application/x-tex\\\">V</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is close to a flat disk of integer multiplicity <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"greater-than upper Q\\\"> <mml:semantics> <mml:mrow> <mml:mo>&gt;</mml:mo> <mml:mi>Q</mml:mi> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">&gt;Q</mml:annotation> </mml:semantics> </mml:math> </inline-formula>; and (iii) <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper V\\\"> <mml:semantics> <mml:mi>V</mml:mi> <mml:annotation encoding=\\\"application/x-tex\\\">V</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is close to a stationary cone with vertex density <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper Q\\\"> <mml:semantics> <mml:mi>Q</mml:mi> <mml:annotation encoding=\\\"application/x-tex\\\">Q</mml:annotation> </mml:semantics> </mml:math> </inline-formula> and supports the union of 3 or more half-hyperplanes meeting along a common axis. The main new result concerns (i) and gives in particular a description of <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper V element-of script upper S Subscript upper Q\\\"> <mml:semantics> <mml:mrow> <mml:mi>V</mml:mi> <mml:mo>∈<!-- ∈ --></mml:mo> <mml:msub> <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\"> <mml:mi class=\\\"MJX-tex-caligraphic\\\" mathvariant=\\\"script\\\">S</mml:mi> </mml:mrow> <mml:mi>Q</mml:mi> </mml:msub> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">V\\\\in \\\\mathcal {S}_Q</mml:annotation> </mml:semantics> </mml:math> </inline-formula> near branch points of density <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper Q\\\"> <mml:semantics> <mml:mi>Q</mml:mi> <mml:annotation encoding=\\\"application/x-tex\\\">Q</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. Results concerning (ii) and (iii) directly follow from parts of previous work of the second author [Ann. of Math. (2) 179 (2014), pp. 843–1007]. These three theorems, taken with <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper Q equals p slash 2\\\"> <mml:semantics> <mml:mrow> <mml:mi>Q</mml:mi> <mml:mo>=</mml:mo> <mml:mi>p</mml:mi> <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\"> <mml:mo>/</mml:mo> </mml:mrow> <mml:mn>2</mml:mn> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">Q=p/2</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, are readily applicable to codimension 1 rectifiable area minimising currents mod <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"p\\\"> <mml:semantics> <mml:mi>p</mml:mi> <mml:annotation encoding=\\\"application/x-tex\\\">p</mml:annotation> </mml:semantics> </mml:math> </inline-formula> for any integer <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"p greater-than-or-equal-to 2\\\"> <mml:semantics> <mml:mrow> <mml:mi>p</mml:mi> <mml:mo>≥<!-- ≥ --></mml:mo> <mml:mn>2</mml:mn> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">p\\\\geq 2</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, establishing local structure properties of such a current <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper T\\\"> <mml:semantics> <mml:mi>T</mml:mi> <mml:annotation encoding=\\\"application/x-tex\\\">T</mml:annotation> </mml:semantics> </mml:math> </inline-formula> as consequences of little, readily checked, information. Specifically, applying case (i) it follows that, for even <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"p\\\"> <mml:semantics> <mml:mi>p</mml:mi> <mml:annotation encoding=\\\"application/x-tex\\\">p</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, if <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper T\\\"> <mml:semantics> <mml:mi>T</mml:mi> <mml:annotation encoding=\\\"application/x-tex\\\">T</mml:annotation> </mml:semantics> </mml:math> </inline-formula> has one tangent cone at an interior point <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"y\\\"> <mml:semantics> <mml:mi>y</mml:mi> <mml:annotation encoding=\\\"application/x-tex\\\">y</mml:annotation> </mml:semantics> </mml:math> </inline-formula> equal to an (oriented) hyperplane <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper P\\\"> <mml:semantics> <mml:mi>P</mml:mi> <mml:annotation encoding=\\\"application/x-tex\\\">P</mml:annotation> </mml:semantics> </mml:math> </inline-formula> of multiplicity <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"p slash 2\\\"> <mml:semantics> <mml:mrow> <mml:mi>p</mml:mi> <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\"> <mml:mo>/</mml:mo> </mml:mrow> <mml:mn>2</mml:mn> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">p/2</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, then <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper P\\\"> <mml:semantics> <mml:mi>P</mml:mi> <mml:annotation encoding=\\\"application/x-tex\\\">P</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is the unique tangent cone at <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"y\\\"> <mml:semantics> <mml:mi>y</mml:mi> <mml:annotation encoding=\\\"application/x-tex\\\">y</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, and <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper T\\\"> <mml:semantics> <mml:mi>T</mml:mi> <mml:annotation encoding=\\\"application/x-tex\\\">T</mml:annotation> </mml:semantics> </mml:math> </inline-formula> near <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"y\\\"> <mml:semantics> <mml:mi>y</mml:mi> <mml:annotation encoding=\\\"application/x-tex\\\">y</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is given by the graph of a <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"StartFraction p Over 2 EndFraction\\\"> <mml:semantics> <mml:mfrac> <mml:mi>p</mml:mi> <mml:mn>2</mml:mn> </mml:mfrac> <mml:annotation encoding=\\\"application/x-tex\\\">\\\\frac {p}{2}</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-valued function with <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper C Superscript 1 comma alpha\\\"> <mml:semantics> <mml:msup> <mml:mi>C</mml:mi> <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\"> <mml:mn>1</mml:mn> <mml:mo>,</mml:mo> <mml:mi>α<!-- α --></mml:mi> </mml:mrow> </mml:msup> <mml:annotation encoding=\\\"application/x-tex\\\">C^{1,\\\\alpha }</mml:annotation> </mml:semantics> </mml:math> </inline-formula> regularity in a certain generalised sense. This settles a basic remaining open question in the study of the local structure of such currents near points with planar tangent cones, extending the cases <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"p equals 2\\\"> <mml:semantics> <mml:mrow> <mml:mi>p</mml:mi> <mml:mo>=</mml:mo> <mml:mn>2</mml:mn> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">p=2</mml:annotation> </mml:semantics> </mml:math> </inline-formula> and <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"p equals 4\\\"> <mml:semantics> <mml:mrow> <mml:mi>p</mml:mi> <mml:mo>=</mml:mo> <mml:mn>4</mml:mn> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">p=4</mml:annotation> </mml:semantics> </mml:math> </inline-formula> of the result which have been known since the 1970’s from the De Giorgi–Allard regularity theory [Ann. of Math. (2) 95 (1972), pp. 417–491] [<italic>Frontiere orientate di misura minima</italic>, Editrice Tecnico Scientifica, Pisa, 1961] and the structure theory of White [Invent. Math. 53 (1979), pp. 45–58] respectively. If <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper P\\\"> <mml:semantics> <mml:mi>P</mml:mi> <mml:annotation encoding=\\\"application/x-tex\\\">P</mml:annotation> </mml:semantics> </mml:math> </inline-formula> has multiplicity <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"greater-than p slash 2\\\"> <mml:semantics> <mml:mrow> <mml:mo>&gt;</mml:mo> <mml:mi>p</mml:mi> <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\"> <mml:mo>/</mml:mo> </mml:mrow> <mml:mn>2</mml:mn> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">&gt; p/2</mml:annotation> </mml:semantics> </mml:math> </inline-formula> (for <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"p\\\"> <mml:semantics> <mml:mi>p</mml:mi> <mml:annotation encoding=\\\"application/x-tex\\\">p</mml:annotation> </mml:semantics> </mml:math> </inline-formula> even or odd), it follows from case (ii) that <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper T\\\"> <mml:semantics> <mml:mi>T</mml:mi> <mml:annotation encoding=\\\"application/x-tex\\\">T</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is smoothly embedded near <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"y\\\"> <mml:semantics> <mml:mi>y</mml:mi> <mml:annotation encoding=\\\"application/x-tex\\\">y</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, recovering a second well-known theorem of White [<italic>Proc. Sympos. Pure Math.</italic>, Amer. Math. Soc., Providence, RI, 1986, pp. 413–427]. Finally, the main structure results obtained recently by De Lellis–Hirsch–Marchese–Spolaor–Stuvard [arXiv:2105.08135, 2021] for such currents <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper T\\\"> <mml:semantics> <mml:mi>T</mml:mi> <mml:annotation encoding=\\\"application/x-tex\\\">T</mml:annotation> </mml:semantics> </mml:math> </inline-formula> all follow from case (iii).\",\"PeriodicalId\":54764,\"journal\":{\"name\":\"Journal of the American Mathematical Society\",\"volume\":\"50 1\",\"pages\":\"0\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2023-10-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the American Mathematical Society\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1090/jams/1032\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Mathematical Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/jams/1032","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 8

摘要

对于任意Q∈{3,2,2,5,2,3,…}Q \in {\frac 32,2{,}{}\frac 52,3, {}{}\dotsc},我们建立了S Q \mathcal S_Q{类不允许密度&gt经典奇点的稳定余维1平稳积分变量的结构理论;Q &gt;该理论包括三个主要定理,它们描述了一个变量V∈S Q V }\in\mathcal S_Q{在以下情况下的性质:(i) V V接近一个复数Q Q的平面圆盘(对于整数Q Q);(ii) V V接近整数倍率&gt的平盘;Q &gt;Q;(iii) V V接近顶点密度为Q Q的静止锥,并支持沿公共轴相交的3个或多个半超平面的并集。主要的新结果与(i)有关,特别给出了V∈S Q V }\in\mathcal S_Q在密度Q Q{分支点附近的描述。关于(ii)和(iii)的结果直接遵循第二作者先前工作的部分内容[Ann。数学。(2) 179 (2014), pp. 843-1007。这三个定理,取Q=p/2 Q=p/2,很容易适用于余维数为1的可整流面积,对于任意整数p≥2 p }\geq 2,最小化电流模pp,建立这种电流T T的局部结构性质,作为很少的,容易检查的信息的结果。具体地说,应用情形(i)可以得出,对于偶pp,如果T T在内部点y y有一个切锥等于一个多重p/2 p/2的(有向)超平面pp,则pp是y y处唯一的切锥,y y附近的T T由p2 \frac p值{函数的图给出,具有c1, }{α} C^1, {\alpha在某种广义意义上的正则性。这解决了在平面切锥点附近的电流局部结构研究中一个基本的悬而未决的问题,扩展了p=2 p=2和p=4 p=4的情况,这些结果自20世纪70年代以来已经从De Giorgi-Allard正则性理论中得到。数学。(2) 95(1972),页417-491][前沿定向的最小的misura, Editrice Tecnico scientific, Pisa, 1961]和White的结构理论[发明]。数学,53(1979),页45-58]。如果P P具有多重性&gt;P / 2 &gt;p/2(对于p p偶数或奇数),由情形(ii)可知T T平滑嵌入y y附近,恢复White [Proc. Sympos]的第二个著名定理。纯数学。美国人。数学。Soc。[j].中国科学,1986,第413-427页。最后,De Lellis-Hirsch-Marchese-Spolaor-Stuvard [arXiv: 2105.08135,2021]对这类电流T T的主要结构结果都是由情形(iii)推导出来的。}
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A structure theory for stable codimension 1 integral varifolds with applications to area minimising hypersurfaces mod 𝑝
For any Q { 3 2 , 2 , 5 2 , 3 , } Q\in \{\frac {3}{2},2,\frac {5}{2},3,\dotsc \} , we establish a structure theory for the class S Q \mathcal {S}_Q of stable codimension 1 stationary integral varifolds admitting no classical singularities of density > Q >Q . This theory comprises three main theorems which describe the nature of a varifold V S Q V\in \mathcal {S}_Q when: (i) V V is close to a flat disk of multiplicity Q Q (for integer Q Q ); (ii) V V is close to a flat disk of integer multiplicity > Q >Q ; and (iii) V V is close to a stationary cone with vertex density Q Q and supports the union of 3 or more half-hyperplanes meeting along a common axis. The main new result concerns (i) and gives in particular a description of V S Q V\in \mathcal {S}_Q near branch points of density Q Q . Results concerning (ii) and (iii) directly follow from parts of previous work of the second author [Ann. of Math. (2) 179 (2014), pp. 843–1007]. These three theorems, taken with Q = p / 2 Q=p/2 , are readily applicable to codimension 1 rectifiable area minimising currents mod p p for any integer p 2 p\geq 2 , establishing local structure properties of such a current T T as consequences of little, readily checked, information. Specifically, applying case (i) it follows that, for even p p , if T T has one tangent cone at an interior point y y equal to an (oriented) hyperplane P P of multiplicity p / 2 p/2 , then P P is the unique tangent cone at y y , and T T near y y is given by the graph of a p 2 \frac {p}{2} -valued function with C 1 , α C^{1,\alpha } regularity in a certain generalised sense. This settles a basic remaining open question in the study of the local structure of such currents near points with planar tangent cones, extending the cases p = 2 p=2 and p = 4 p=4 of the result which have been known since the 1970’s from the De Giorgi–Allard regularity theory [Ann. of Math. (2) 95 (1972), pp. 417–491] [Frontiere orientate di misura minima, Editrice Tecnico Scientifica, Pisa, 1961] and the structure theory of White [Invent. Math. 53 (1979), pp. 45–58] respectively. If P P has multiplicity > p / 2 > p/2 (for p p even or odd), it follows from case (ii) that T T is smoothly embedded near y y , recovering a second well-known theorem of White [Proc. Sympos. Pure Math., Amer. Math. Soc., Providence, RI, 1986, pp. 413–427]. Finally, the main structure results obtained recently by De Lellis–Hirsch–Marchese–Spolaor–Stuvard [arXiv:2105.08135, 2021] for such currents T T all follow from case (iii).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.60
自引率
0.00%
发文量
14
审稿时长
>12 weeks
期刊介绍: All articles submitted to this journal are peer-reviewed. The AMS has a single blind peer-review process in which the reviewers know who the authors of the manuscript are, but the authors do not have access to the information on who the peer reviewers are. This journal is devoted to research articles of the highest quality in all areas of pure and applied mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信