{"title":"稳定余维数为1的积分变形的结构理论及其在极小化超曲面上的应用[m]𝑝","authors":"Paul Minter, Neshan Wickramasekera","doi":"10.1090/jams/1032","DOIUrl":null,"url":null,"abstract":"For any <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper Q element-of StartSet three halves comma 2 comma five halves comma 3 comma ellipsis EndSet\"> <mml:semantics> <mml:mrow> <mml:mi>Q</mml:mi> <mml:mo>∈<!-- ∈ --></mml:mo> <mml:mo fence=\"false\" stretchy=\"false\">{</mml:mo> <mml:mfrac> <mml:mn>3</mml:mn> <mml:mn>2</mml:mn> </mml:mfrac> <mml:mo>,</mml:mo> <mml:mn>2</mml:mn> <mml:mo>,</mml:mo> <mml:mfrac> <mml:mn>5</mml:mn> <mml:mn>2</mml:mn> </mml:mfrac> <mml:mo>,</mml:mo> <mml:mn>3</mml:mn> <mml:mo>,</mml:mo> <mml:mo>…<!-- … --></mml:mo> <mml:mo fence=\"false\" stretchy=\"false\">}</mml:mo> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">Q\\in \\{\\frac {3}{2},2,\\frac {5}{2},3,\\dotsc \\}</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, we establish a structure theory for the class <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"script upper S Subscript upper Q\"> <mml:semantics> <mml:msub> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mi class=\"MJX-tex-caligraphic\" mathvariant=\"script\">S</mml:mi> </mml:mrow> <mml:mi>Q</mml:mi> </mml:msub> <mml:annotation encoding=\"application/x-tex\">\\mathcal {S}_Q</mml:annotation> </mml:semantics> </mml:math> </inline-formula> of stable codimension 1 stationary integral varifolds admitting no classical singularities of density <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"greater-than upper Q\"> <mml:semantics> <mml:mrow> <mml:mo>></mml:mo> <mml:mi>Q</mml:mi> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">>Q</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. This theory comprises three main theorems which describe the nature of a varifold <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper V element-of script upper S Subscript upper Q\"> <mml:semantics> <mml:mrow> <mml:mi>V</mml:mi> <mml:mo>∈<!-- ∈ --></mml:mo> <mml:msub> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mi class=\"MJX-tex-caligraphic\" mathvariant=\"script\">S</mml:mi> </mml:mrow> <mml:mi>Q</mml:mi> </mml:msub> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">V\\in \\mathcal {S}_Q</mml:annotation> </mml:semantics> </mml:math> </inline-formula> when: (i) <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper V\"> <mml:semantics> <mml:mi>V</mml:mi> <mml:annotation encoding=\"application/x-tex\">V</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is close to a flat disk of multiplicity <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper Q\"> <mml:semantics> <mml:mi>Q</mml:mi> <mml:annotation encoding=\"application/x-tex\">Q</mml:annotation> </mml:semantics> </mml:math> </inline-formula> (for integer <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper Q\"> <mml:semantics> <mml:mi>Q</mml:mi> <mml:annotation encoding=\"application/x-tex\">Q</mml:annotation> </mml:semantics> </mml:math> </inline-formula>); (ii) <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper V\"> <mml:semantics> <mml:mi>V</mml:mi> <mml:annotation encoding=\"application/x-tex\">V</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is close to a flat disk of integer multiplicity <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"greater-than upper Q\"> <mml:semantics> <mml:mrow> <mml:mo>></mml:mo> <mml:mi>Q</mml:mi> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">>Q</mml:annotation> </mml:semantics> </mml:math> </inline-formula>; and (iii) <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper V\"> <mml:semantics> <mml:mi>V</mml:mi> <mml:annotation encoding=\"application/x-tex\">V</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is close to a stationary cone with vertex density <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper Q\"> <mml:semantics> <mml:mi>Q</mml:mi> <mml:annotation encoding=\"application/x-tex\">Q</mml:annotation> </mml:semantics> </mml:math> </inline-formula> and supports the union of 3 or more half-hyperplanes meeting along a common axis. The main new result concerns (i) and gives in particular a description of <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper V element-of script upper S Subscript upper Q\"> <mml:semantics> <mml:mrow> <mml:mi>V</mml:mi> <mml:mo>∈<!-- ∈ --></mml:mo> <mml:msub> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mi class=\"MJX-tex-caligraphic\" mathvariant=\"script\">S</mml:mi> </mml:mrow> <mml:mi>Q</mml:mi> </mml:msub> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">V\\in \\mathcal {S}_Q</mml:annotation> </mml:semantics> </mml:math> </inline-formula> near branch points of density <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper Q\"> <mml:semantics> <mml:mi>Q</mml:mi> <mml:annotation encoding=\"application/x-tex\">Q</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. Results concerning (ii) and (iii) directly follow from parts of previous work of the second author [Ann. of Math. (2) 179 (2014), pp. 843–1007]. These three theorems, taken with <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper Q equals p slash 2\"> <mml:semantics> <mml:mrow> <mml:mi>Q</mml:mi> <mml:mo>=</mml:mo> <mml:mi>p</mml:mi> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mo>/</mml:mo> </mml:mrow> <mml:mn>2</mml:mn> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">Q=p/2</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, are readily applicable to codimension 1 rectifiable area minimising currents mod <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"p\"> <mml:semantics> <mml:mi>p</mml:mi> <mml:annotation encoding=\"application/x-tex\">p</mml:annotation> </mml:semantics> </mml:math> </inline-formula> for any integer <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"p greater-than-or-equal-to 2\"> <mml:semantics> <mml:mrow> <mml:mi>p</mml:mi> <mml:mo>≥<!-- ≥ --></mml:mo> <mml:mn>2</mml:mn> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">p\\geq 2</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, establishing local structure properties of such a current <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper T\"> <mml:semantics> <mml:mi>T</mml:mi> <mml:annotation encoding=\"application/x-tex\">T</mml:annotation> </mml:semantics> </mml:math> </inline-formula> as consequences of little, readily checked, information. Specifically, applying case (i) it follows that, for even <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"p\"> <mml:semantics> <mml:mi>p</mml:mi> <mml:annotation encoding=\"application/x-tex\">p</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, if <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper T\"> <mml:semantics> <mml:mi>T</mml:mi> <mml:annotation encoding=\"application/x-tex\">T</mml:annotation> </mml:semantics> </mml:math> </inline-formula> has one tangent cone at an interior point <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"y\"> <mml:semantics> <mml:mi>y</mml:mi> <mml:annotation encoding=\"application/x-tex\">y</mml:annotation> </mml:semantics> </mml:math> </inline-formula> equal to an (oriented) hyperplane <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper P\"> <mml:semantics> <mml:mi>P</mml:mi> <mml:annotation encoding=\"application/x-tex\">P</mml:annotation> </mml:semantics> </mml:math> </inline-formula> of multiplicity <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"p slash 2\"> <mml:semantics> <mml:mrow> <mml:mi>p</mml:mi> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mo>/</mml:mo> </mml:mrow> <mml:mn>2</mml:mn> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">p/2</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, then <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper P\"> <mml:semantics> <mml:mi>P</mml:mi> <mml:annotation encoding=\"application/x-tex\">P</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is the unique tangent cone at <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"y\"> <mml:semantics> <mml:mi>y</mml:mi> <mml:annotation encoding=\"application/x-tex\">y</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, and <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper T\"> <mml:semantics> <mml:mi>T</mml:mi> <mml:annotation encoding=\"application/x-tex\">T</mml:annotation> </mml:semantics> </mml:math> </inline-formula> near <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"y\"> <mml:semantics> <mml:mi>y</mml:mi> <mml:annotation encoding=\"application/x-tex\">y</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is given by the graph of a <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"StartFraction p Over 2 EndFraction\"> <mml:semantics> <mml:mfrac> <mml:mi>p</mml:mi> <mml:mn>2</mml:mn> </mml:mfrac> <mml:annotation encoding=\"application/x-tex\">\\frac {p}{2}</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-valued function with <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper C Superscript 1 comma alpha\"> <mml:semantics> <mml:msup> <mml:mi>C</mml:mi> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mn>1</mml:mn> <mml:mo>,</mml:mo> <mml:mi>α<!-- α --></mml:mi> </mml:mrow> </mml:msup> <mml:annotation encoding=\"application/x-tex\">C^{1,\\alpha }</mml:annotation> </mml:semantics> </mml:math> </inline-formula> regularity in a certain generalised sense. This settles a basic remaining open question in the study of the local structure of such currents near points with planar tangent cones, extending the cases <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"p equals 2\"> <mml:semantics> <mml:mrow> <mml:mi>p</mml:mi> <mml:mo>=</mml:mo> <mml:mn>2</mml:mn> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">p=2</mml:annotation> </mml:semantics> </mml:math> </inline-formula> and <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"p equals 4\"> <mml:semantics> <mml:mrow> <mml:mi>p</mml:mi> <mml:mo>=</mml:mo> <mml:mn>4</mml:mn> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">p=4</mml:annotation> </mml:semantics> </mml:math> </inline-formula> of the result which have been known since the 1970’s from the De Giorgi–Allard regularity theory [Ann. of Math. (2) 95 (1972), pp. 417–491] [<italic>Frontiere orientate di misura minima</italic>, Editrice Tecnico Scientifica, Pisa, 1961] and the structure theory of White [Invent. Math. 53 (1979), pp. 45–58] respectively. If <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper P\"> <mml:semantics> <mml:mi>P</mml:mi> <mml:annotation encoding=\"application/x-tex\">P</mml:annotation> </mml:semantics> </mml:math> </inline-formula> has multiplicity <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"greater-than p slash 2\"> <mml:semantics> <mml:mrow> <mml:mo>></mml:mo> <mml:mi>p</mml:mi> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mo>/</mml:mo> </mml:mrow> <mml:mn>2</mml:mn> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">> p/2</mml:annotation> </mml:semantics> </mml:math> </inline-formula> (for <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"p\"> <mml:semantics> <mml:mi>p</mml:mi> <mml:annotation encoding=\"application/x-tex\">p</mml:annotation> </mml:semantics> </mml:math> </inline-formula> even or odd), it follows from case (ii) that <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper T\"> <mml:semantics> <mml:mi>T</mml:mi> <mml:annotation encoding=\"application/x-tex\">T</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is smoothly embedded near <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"y\"> <mml:semantics> <mml:mi>y</mml:mi> <mml:annotation encoding=\"application/x-tex\">y</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, recovering a second well-known theorem of White [<italic>Proc. Sympos. Pure Math.</italic>, Amer. Math. Soc., Providence, RI, 1986, pp. 413–427]. Finally, the main structure results obtained recently by De Lellis–Hirsch–Marchese–Spolaor–Stuvard [arXiv:2105.08135, 2021] for such currents <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper T\"> <mml:semantics> <mml:mi>T</mml:mi> <mml:annotation encoding=\"application/x-tex\">T</mml:annotation> </mml:semantics> </mml:math> </inline-formula> all follow from case (iii).","PeriodicalId":54764,"journal":{"name":"Journal of the American Mathematical Society","volume":"50 1","pages":"0"},"PeriodicalIF":3.5000,"publicationDate":"2023-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"A structure theory for stable codimension 1 integral varifolds with applications to area minimising hypersurfaces mod 𝑝\",\"authors\":\"Paul Minter, Neshan Wickramasekera\",\"doi\":\"10.1090/jams/1032\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For any <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper Q element-of StartSet three halves comma 2 comma five halves comma 3 comma ellipsis EndSet\\\"> <mml:semantics> <mml:mrow> <mml:mi>Q</mml:mi> <mml:mo>∈<!-- ∈ --></mml:mo> <mml:mo fence=\\\"false\\\" stretchy=\\\"false\\\">{</mml:mo> <mml:mfrac> <mml:mn>3</mml:mn> <mml:mn>2</mml:mn> </mml:mfrac> <mml:mo>,</mml:mo> <mml:mn>2</mml:mn> <mml:mo>,</mml:mo> <mml:mfrac> <mml:mn>5</mml:mn> <mml:mn>2</mml:mn> </mml:mfrac> <mml:mo>,</mml:mo> <mml:mn>3</mml:mn> <mml:mo>,</mml:mo> <mml:mo>…<!-- … --></mml:mo> <mml:mo fence=\\\"false\\\" stretchy=\\\"false\\\">}</mml:mo> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">Q\\\\in \\\\{\\\\frac {3}{2},2,\\\\frac {5}{2},3,\\\\dotsc \\\\}</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, we establish a structure theory for the class <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"script upper S Subscript upper Q\\\"> <mml:semantics> <mml:msub> <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\"> <mml:mi class=\\\"MJX-tex-caligraphic\\\" mathvariant=\\\"script\\\">S</mml:mi> </mml:mrow> <mml:mi>Q</mml:mi> </mml:msub> <mml:annotation encoding=\\\"application/x-tex\\\">\\\\mathcal {S}_Q</mml:annotation> </mml:semantics> </mml:math> </inline-formula> of stable codimension 1 stationary integral varifolds admitting no classical singularities of density <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"greater-than upper Q\\\"> <mml:semantics> <mml:mrow> <mml:mo>></mml:mo> <mml:mi>Q</mml:mi> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">>Q</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. This theory comprises three main theorems which describe the nature of a varifold <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper V element-of script upper S Subscript upper Q\\\"> <mml:semantics> <mml:mrow> <mml:mi>V</mml:mi> <mml:mo>∈<!-- ∈ --></mml:mo> <mml:msub> <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\"> <mml:mi class=\\\"MJX-tex-caligraphic\\\" mathvariant=\\\"script\\\">S</mml:mi> </mml:mrow> <mml:mi>Q</mml:mi> </mml:msub> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">V\\\\in \\\\mathcal {S}_Q</mml:annotation> </mml:semantics> </mml:math> </inline-formula> when: (i) <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper V\\\"> <mml:semantics> <mml:mi>V</mml:mi> <mml:annotation encoding=\\\"application/x-tex\\\">V</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is close to a flat disk of multiplicity <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper Q\\\"> <mml:semantics> <mml:mi>Q</mml:mi> <mml:annotation encoding=\\\"application/x-tex\\\">Q</mml:annotation> </mml:semantics> </mml:math> </inline-formula> (for integer <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper Q\\\"> <mml:semantics> <mml:mi>Q</mml:mi> <mml:annotation encoding=\\\"application/x-tex\\\">Q</mml:annotation> </mml:semantics> </mml:math> </inline-formula>); (ii) <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper V\\\"> <mml:semantics> <mml:mi>V</mml:mi> <mml:annotation encoding=\\\"application/x-tex\\\">V</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is close to a flat disk of integer multiplicity <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"greater-than upper Q\\\"> <mml:semantics> <mml:mrow> <mml:mo>></mml:mo> <mml:mi>Q</mml:mi> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">>Q</mml:annotation> </mml:semantics> </mml:math> </inline-formula>; and (iii) <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper V\\\"> <mml:semantics> <mml:mi>V</mml:mi> <mml:annotation encoding=\\\"application/x-tex\\\">V</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is close to a stationary cone with vertex density <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper Q\\\"> <mml:semantics> <mml:mi>Q</mml:mi> <mml:annotation encoding=\\\"application/x-tex\\\">Q</mml:annotation> </mml:semantics> </mml:math> </inline-formula> and supports the union of 3 or more half-hyperplanes meeting along a common axis. The main new result concerns (i) and gives in particular a description of <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper V element-of script upper S Subscript upper Q\\\"> <mml:semantics> <mml:mrow> <mml:mi>V</mml:mi> <mml:mo>∈<!-- ∈ --></mml:mo> <mml:msub> <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\"> <mml:mi class=\\\"MJX-tex-caligraphic\\\" mathvariant=\\\"script\\\">S</mml:mi> </mml:mrow> <mml:mi>Q</mml:mi> </mml:msub> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">V\\\\in \\\\mathcal {S}_Q</mml:annotation> </mml:semantics> </mml:math> </inline-formula> near branch points of density <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper Q\\\"> <mml:semantics> <mml:mi>Q</mml:mi> <mml:annotation encoding=\\\"application/x-tex\\\">Q</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. Results concerning (ii) and (iii) directly follow from parts of previous work of the second author [Ann. of Math. (2) 179 (2014), pp. 843–1007]. These three theorems, taken with <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper Q equals p slash 2\\\"> <mml:semantics> <mml:mrow> <mml:mi>Q</mml:mi> <mml:mo>=</mml:mo> <mml:mi>p</mml:mi> <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\"> <mml:mo>/</mml:mo> </mml:mrow> <mml:mn>2</mml:mn> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">Q=p/2</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, are readily applicable to codimension 1 rectifiable area minimising currents mod <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"p\\\"> <mml:semantics> <mml:mi>p</mml:mi> <mml:annotation encoding=\\\"application/x-tex\\\">p</mml:annotation> </mml:semantics> </mml:math> </inline-formula> for any integer <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"p greater-than-or-equal-to 2\\\"> <mml:semantics> <mml:mrow> <mml:mi>p</mml:mi> <mml:mo>≥<!-- ≥ --></mml:mo> <mml:mn>2</mml:mn> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">p\\\\geq 2</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, establishing local structure properties of such a current <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper T\\\"> <mml:semantics> <mml:mi>T</mml:mi> <mml:annotation encoding=\\\"application/x-tex\\\">T</mml:annotation> </mml:semantics> </mml:math> </inline-formula> as consequences of little, readily checked, information. Specifically, applying case (i) it follows that, for even <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"p\\\"> <mml:semantics> <mml:mi>p</mml:mi> <mml:annotation encoding=\\\"application/x-tex\\\">p</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, if <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper T\\\"> <mml:semantics> <mml:mi>T</mml:mi> <mml:annotation encoding=\\\"application/x-tex\\\">T</mml:annotation> </mml:semantics> </mml:math> </inline-formula> has one tangent cone at an interior point <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"y\\\"> <mml:semantics> <mml:mi>y</mml:mi> <mml:annotation encoding=\\\"application/x-tex\\\">y</mml:annotation> </mml:semantics> </mml:math> </inline-formula> equal to an (oriented) hyperplane <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper P\\\"> <mml:semantics> <mml:mi>P</mml:mi> <mml:annotation encoding=\\\"application/x-tex\\\">P</mml:annotation> </mml:semantics> </mml:math> </inline-formula> of multiplicity <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"p slash 2\\\"> <mml:semantics> <mml:mrow> <mml:mi>p</mml:mi> <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\"> <mml:mo>/</mml:mo> </mml:mrow> <mml:mn>2</mml:mn> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">p/2</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, then <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper P\\\"> <mml:semantics> <mml:mi>P</mml:mi> <mml:annotation encoding=\\\"application/x-tex\\\">P</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is the unique tangent cone at <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"y\\\"> <mml:semantics> <mml:mi>y</mml:mi> <mml:annotation encoding=\\\"application/x-tex\\\">y</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, and <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper T\\\"> <mml:semantics> <mml:mi>T</mml:mi> <mml:annotation encoding=\\\"application/x-tex\\\">T</mml:annotation> </mml:semantics> </mml:math> </inline-formula> near <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"y\\\"> <mml:semantics> <mml:mi>y</mml:mi> <mml:annotation encoding=\\\"application/x-tex\\\">y</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is given by the graph of a <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"StartFraction p Over 2 EndFraction\\\"> <mml:semantics> <mml:mfrac> <mml:mi>p</mml:mi> <mml:mn>2</mml:mn> </mml:mfrac> <mml:annotation encoding=\\\"application/x-tex\\\">\\\\frac {p}{2}</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-valued function with <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper C Superscript 1 comma alpha\\\"> <mml:semantics> <mml:msup> <mml:mi>C</mml:mi> <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\"> <mml:mn>1</mml:mn> <mml:mo>,</mml:mo> <mml:mi>α<!-- α --></mml:mi> </mml:mrow> </mml:msup> <mml:annotation encoding=\\\"application/x-tex\\\">C^{1,\\\\alpha }</mml:annotation> </mml:semantics> </mml:math> </inline-formula> regularity in a certain generalised sense. This settles a basic remaining open question in the study of the local structure of such currents near points with planar tangent cones, extending the cases <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"p equals 2\\\"> <mml:semantics> <mml:mrow> <mml:mi>p</mml:mi> <mml:mo>=</mml:mo> <mml:mn>2</mml:mn> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">p=2</mml:annotation> </mml:semantics> </mml:math> </inline-formula> and <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"p equals 4\\\"> <mml:semantics> <mml:mrow> <mml:mi>p</mml:mi> <mml:mo>=</mml:mo> <mml:mn>4</mml:mn> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">p=4</mml:annotation> </mml:semantics> </mml:math> </inline-formula> of the result which have been known since the 1970’s from the De Giorgi–Allard regularity theory [Ann. of Math. (2) 95 (1972), pp. 417–491] [<italic>Frontiere orientate di misura minima</italic>, Editrice Tecnico Scientifica, Pisa, 1961] and the structure theory of White [Invent. Math. 53 (1979), pp. 45–58] respectively. If <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper P\\\"> <mml:semantics> <mml:mi>P</mml:mi> <mml:annotation encoding=\\\"application/x-tex\\\">P</mml:annotation> </mml:semantics> </mml:math> </inline-formula> has multiplicity <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"greater-than p slash 2\\\"> <mml:semantics> <mml:mrow> <mml:mo>></mml:mo> <mml:mi>p</mml:mi> <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\"> <mml:mo>/</mml:mo> </mml:mrow> <mml:mn>2</mml:mn> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">> p/2</mml:annotation> </mml:semantics> </mml:math> </inline-formula> (for <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"p\\\"> <mml:semantics> <mml:mi>p</mml:mi> <mml:annotation encoding=\\\"application/x-tex\\\">p</mml:annotation> </mml:semantics> </mml:math> </inline-formula> even or odd), it follows from case (ii) that <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper T\\\"> <mml:semantics> <mml:mi>T</mml:mi> <mml:annotation encoding=\\\"application/x-tex\\\">T</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is smoothly embedded near <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"y\\\"> <mml:semantics> <mml:mi>y</mml:mi> <mml:annotation encoding=\\\"application/x-tex\\\">y</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, recovering a second well-known theorem of White [<italic>Proc. Sympos. Pure Math.</italic>, Amer. Math. Soc., Providence, RI, 1986, pp. 413–427]. Finally, the main structure results obtained recently by De Lellis–Hirsch–Marchese–Spolaor–Stuvard [arXiv:2105.08135, 2021] for such currents <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper T\\\"> <mml:semantics> <mml:mi>T</mml:mi> <mml:annotation encoding=\\\"application/x-tex\\\">T</mml:annotation> </mml:semantics> </mml:math> </inline-formula> all follow from case (iii).\",\"PeriodicalId\":54764,\"journal\":{\"name\":\"Journal of the American Mathematical Society\",\"volume\":\"50 1\",\"pages\":\"0\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2023-10-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the American Mathematical Society\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1090/jams/1032\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Mathematical Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/jams/1032","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
A structure theory for stable codimension 1 integral varifolds with applications to area minimising hypersurfaces mod 𝑝
For any Q∈{32,2,52,3,…}Q\in \{\frac {3}{2},2,\frac {5}{2},3,\dotsc \}, we establish a structure theory for the class SQ\mathcal {S}_Q of stable codimension 1 stationary integral varifolds admitting no classical singularities of density >Q>Q. This theory comprises three main theorems which describe the nature of a varifold V∈SQV\in \mathcal {S}_Q when: (i) VV is close to a flat disk of multiplicity QQ (for integer QQ); (ii) VV is close to a flat disk of integer multiplicity >Q>Q; and (iii) VV is close to a stationary cone with vertex density QQ and supports the union of 3 or more half-hyperplanes meeting along a common axis. The main new result concerns (i) and gives in particular a description of V∈SQV\in \mathcal {S}_Q near branch points of density QQ. Results concerning (ii) and (iii) directly follow from parts of previous work of the second author [Ann. of Math. (2) 179 (2014), pp. 843–1007]. These three theorems, taken with Q=p/2Q=p/2, are readily applicable to codimension 1 rectifiable area minimising currents mod pp for any integer p≥2p\geq 2, establishing local structure properties of such a current TT as consequences of little, readily checked, information. Specifically, applying case (i) it follows that, for even pp, if TT has one tangent cone at an interior point yy equal to an (oriented) hyperplane PP of multiplicity p/2p/2, then PP is the unique tangent cone at yy, and TT near yy is given by the graph of a p2\frac {p}{2}-valued function with C1,αC^{1,\alpha } regularity in a certain generalised sense. This settles a basic remaining open question in the study of the local structure of such currents near points with planar tangent cones, extending the cases p=2p=2 and p=4p=4 of the result which have been known since the 1970’s from the De Giorgi–Allard regularity theory [Ann. of Math. (2) 95 (1972), pp. 417–491] [Frontiere orientate di misura minima, Editrice Tecnico Scientifica, Pisa, 1961] and the structure theory of White [Invent. Math. 53 (1979), pp. 45–58] respectively. If PP has multiplicity >p/2> p/2 (for pp even or odd), it follows from case (ii) that TT is smoothly embedded near yy, recovering a second well-known theorem of White [Proc. Sympos. Pure Math., Amer. Math. Soc., Providence, RI, 1986, pp. 413–427]. Finally, the main structure results obtained recently by De Lellis–Hirsch–Marchese–Spolaor–Stuvard [arXiv:2105.08135, 2021] for such currents TT all follow from case (iii).
期刊介绍:
All articles submitted to this journal are peer-reviewed. The AMS has a single blind peer-review process in which the reviewers know who the authors of the manuscript are, but the authors do not have access to the information on who the peer reviewers are.
This journal is devoted to research articles of the highest quality in all areas of pure and applied mathematics.