输运噪声扰动下三维欧拉方程的全局存在性和非唯一性

IF 1.5 1区 数学 Q2 STATISTICS & PROBABILITY
Martina Hofmanová, Theresa Lange, Umberto Pappalettera
{"title":"输运噪声扰动下三维欧拉方程的全局存在性和非唯一性","authors":"Martina Hofmanová, Theresa Lange, Umberto Pappalettera","doi":"10.1007/s00440-023-01233-5","DOIUrl":null,"url":null,"abstract":"Abstract We construct Hölder continuous, global-in-time probabilistically strong solutions to 3D Euler equations perturbed by Stratonovich transport noise. Kinetic energy of the solutions can be prescribed a priori up to a stopping time, that can be chosen arbitrarily large with high probability. We also prove that there exist infinitely many Hölder continuous initial conditions leading to non-uniqueness of solutions to the Cauchy problem associated with the system. Our construction relies on a flow transformation reducing the SPDE under investigation to a random PDE, and convex integration techniques introduced in the deterministic setting by De Lellis and Székelyhidi, here adapted to consider the stochastic case. In particular, our novel approach allows to construct probabilistically strong solutions on $$[0,\\infty )$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mo>[</mml:mo> <mml:mn>0</mml:mn> <mml:mo>,</mml:mo> <mml:mi>∞</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> </mml:math> directly.","PeriodicalId":20527,"journal":{"name":"Probability Theory and Related Fields","volume":"37 1","pages":"0"},"PeriodicalIF":1.5000,"publicationDate":"2023-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Global existence and non-uniqueness of 3D Euler equations perturbed by transport noise\",\"authors\":\"Martina Hofmanová, Theresa Lange, Umberto Pappalettera\",\"doi\":\"10.1007/s00440-023-01233-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract We construct Hölder continuous, global-in-time probabilistically strong solutions to 3D Euler equations perturbed by Stratonovich transport noise. Kinetic energy of the solutions can be prescribed a priori up to a stopping time, that can be chosen arbitrarily large with high probability. We also prove that there exist infinitely many Hölder continuous initial conditions leading to non-uniqueness of solutions to the Cauchy problem associated with the system. Our construction relies on a flow transformation reducing the SPDE under investigation to a random PDE, and convex integration techniques introduced in the deterministic setting by De Lellis and Székelyhidi, here adapted to consider the stochastic case. In particular, our novel approach allows to construct probabilistically strong solutions on $$[0,\\\\infty )$$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:mrow> <mml:mo>[</mml:mo> <mml:mn>0</mml:mn> <mml:mo>,</mml:mo> <mml:mi>∞</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> </mml:math> directly.\",\"PeriodicalId\":20527,\"journal\":{\"name\":\"Probability Theory and Related Fields\",\"volume\":\"37 1\",\"pages\":\"0\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2023-10-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Probability Theory and Related Fields\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s00440-023-01233-5\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Probability Theory and Related Fields","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s00440-023-01233-5","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 9

摘要

构造了受Stratonovich输运噪声扰动的三维欧拉方程的Hölder连续的、全局的时间概率强解。解的动能可以先验地规定到一个停止时间,该停止时间可以大概率地任意选择。我们还证明了系统存在无穷多个Hölder连续初始条件导致柯西问题解的非唯一性。我们的构建依赖于将所研究的SPDE减少为随机PDE的流动变换,以及De Lellis和sz kelyhidi在确定性设置中引入的凸积分技术,这里适用于考虑随机情况。特别是,我们的新方法允许直接在$$[0,\infty )$$[0,∞]上构造概率强解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Global existence and non-uniqueness of 3D Euler equations perturbed by transport noise
Abstract We construct Hölder continuous, global-in-time probabilistically strong solutions to 3D Euler equations perturbed by Stratonovich transport noise. Kinetic energy of the solutions can be prescribed a priori up to a stopping time, that can be chosen arbitrarily large with high probability. We also prove that there exist infinitely many Hölder continuous initial conditions leading to non-uniqueness of solutions to the Cauchy problem associated with the system. Our construction relies on a flow transformation reducing the SPDE under investigation to a random PDE, and convex integration techniques introduced in the deterministic setting by De Lellis and Székelyhidi, here adapted to consider the stochastic case. In particular, our novel approach allows to construct probabilistically strong solutions on $$[0,\infty )$$ [ 0 , ) directly.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Probability Theory and Related Fields
Probability Theory and Related Fields 数学-统计学与概率论
CiteScore
3.70
自引率
5.00%
发文量
71
审稿时长
6-12 weeks
期刊介绍: Probability Theory and Related Fields publishes research papers in modern probability theory and its various fields of application. Thus, subjects of interest include: mathematical statistical physics, mathematical statistics, mathematical biology, theoretical computer science, and applications of probability theory to other areas of mathematics such as combinatorics, analysis, ergodic theory and geometry. Survey papers on emerging areas of importance may be considered for publication. The main languages of publication are English, French and German.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信