基于Shapley值的投资组合风险分配

IF 0.6 Q4 BUSINESS, FINANCE
Patrick S. Hagan, Andrew Lesniewski, Georgios E. Skoufis, Diana E. Woodward
{"title":"基于Shapley值的投资组合风险分配","authors":"Patrick S. Hagan, Andrew Lesniewski, Georgios E. Skoufis, Diana E. Woodward","doi":"10.1142/s2424786323500044","DOIUrl":null,"url":null,"abstract":"We argue that using the Shapley value of cooperative game theory as the scheme for risk allocation among non-orthogonal risk factors is a natural way of interpreting the contribution made by each of such factors to overall portfolio risk. We discuss a Shapley value scheme for allocating risk to non-orthogonal greeks in a portfolio of derivatives. Such a situation arises, for example, when using a stochastic volatility model to capture option volatility smile. We also show that Shapley value allows for a natural method of interpreting components of enterprise risk measures such as VaR and ES. For all applications discussed, we derive explicit formulas and/or numerical algorithms to calculate the allocations.","PeriodicalId":54088,"journal":{"name":"International Journal of Financial Engineering","volume":"98 1","pages":"0"},"PeriodicalIF":0.6000,"publicationDate":"2023-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Portfolio risk allocation through Shapley value\",\"authors\":\"Patrick S. Hagan, Andrew Lesniewski, Georgios E. Skoufis, Diana E. Woodward\",\"doi\":\"10.1142/s2424786323500044\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We argue that using the Shapley value of cooperative game theory as the scheme for risk allocation among non-orthogonal risk factors is a natural way of interpreting the contribution made by each of such factors to overall portfolio risk. We discuss a Shapley value scheme for allocating risk to non-orthogonal greeks in a portfolio of derivatives. Such a situation arises, for example, when using a stochastic volatility model to capture option volatility smile. We also show that Shapley value allows for a natural method of interpreting components of enterprise risk measures such as VaR and ES. For all applications discussed, we derive explicit formulas and/or numerical algorithms to calculate the allocations.\",\"PeriodicalId\":54088,\"journal\":{\"name\":\"International Journal of Financial Engineering\",\"volume\":\"98 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2023-04-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Financial Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/s2424786323500044\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BUSINESS, FINANCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Financial Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s2424786323500044","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BUSINESS, FINANCE","Score":null,"Total":0}
引用次数: 0

摘要

我们认为,利用合作博弈论的Shapley值作为非正交风险因素之间的风险分配方案,是解释每个这些因素对总体投资组合风险的贡献的一种自然方式。讨论了衍生品组合中非正交希腊人风险分配的Shapley值格式。例如,当使用随机波动率模型捕捉期权波动率微笑时,就会出现这种情况。我们还表明,Shapley值允许一种自然的方法来解释企业风险度量的组成部分,如VaR和ES。对于所讨论的所有应用,我们推导出明确的公式和/或数值算法来计算分配。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Portfolio risk allocation through Shapley value
We argue that using the Shapley value of cooperative game theory as the scheme for risk allocation among non-orthogonal risk factors is a natural way of interpreting the contribution made by each of such factors to overall portfolio risk. We discuss a Shapley value scheme for allocating risk to non-orthogonal greeks in a portfolio of derivatives. Such a situation arises, for example, when using a stochastic volatility model to capture option volatility smile. We also show that Shapley value allows for a natural method of interpreting components of enterprise risk measures such as VaR and ES. For all applications discussed, we derive explicit formulas and/or numerical algorithms to calculate the allocations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
31
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信