图的平衡双曲线共邻系统的多项式表示

IF 0.3 Q4 MATHEMATICS
Aldison M. Asdain, Bayah J. Amiruddin, Regimar A. Rasid, Jeffrey Imer C. Salim, Rosalio G. Artes Jr.
{"title":"图的平衡双曲线共邻系统的多项式表示","authors":"Aldison M. Asdain, Bayah J. Amiruddin, Regimar A. Rasid, Jeffrey Imer C. Salim, Rosalio G. Artes Jr.","doi":"10.17654/0974165823065","DOIUrl":null,"url":null,"abstract":"A biclique in a graph $G$ is a subset of $V(G)$ which induces a complete bipartite subgraph of $G$. It is said to be balanced if it has equivalent independent vertex partitions. In this paper, we introduce a graph polynomial which represents the number of balanced bicliques of $G$ of all possible orders with corresponding common neighborhood systems and establish some results on some special graphs. Received: September 25, 2023Revised: October 10, 2023Accepted: November 1, 2023","PeriodicalId":40868,"journal":{"name":"Advances and Applications in Discrete Mathematics","volume":"37 1","pages":"0"},"PeriodicalIF":0.3000,"publicationDate":"2023-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"POLYNOMIAL REPRESENTATIONS OF A BALANCED BICLIQUE COMMON NEIGHBORHOOD SYSTEM OF GRAPHS\",\"authors\":\"Aldison M. Asdain, Bayah J. Amiruddin, Regimar A. Rasid, Jeffrey Imer C. Salim, Rosalio G. Artes Jr.\",\"doi\":\"10.17654/0974165823065\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A biclique in a graph $G$ is a subset of $V(G)$ which induces a complete bipartite subgraph of $G$. It is said to be balanced if it has equivalent independent vertex partitions. In this paper, we introduce a graph polynomial which represents the number of balanced bicliques of $G$ of all possible orders with corresponding common neighborhood systems and establish some results on some special graphs. Received: September 25, 2023Revised: October 10, 2023Accepted: November 1, 2023\",\"PeriodicalId\":40868,\"journal\":{\"name\":\"Advances and Applications in Discrete Mathematics\",\"volume\":\"37 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2023-10-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances and Applications in Discrete Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.17654/0974165823065\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances and Applications in Discrete Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17654/0974165823065","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

图$G$中的双曲线是$V(G)$的一个子集,它引出$G$的一个完全二部子图。如果它具有相等的独立顶点分区,则称其为平衡的。本文引入了一个图多项式,它表示具有相应的共邻系统的所有可能阶的$G$的平衡双曲线的个数,并在一些特殊图上得到了一些结果。收稿日期:2023年9月25日修稿日期:2023年10月10日收稿日期:2023年11月1日
本文章由计算机程序翻译,如有差异,请以英文原文为准。
POLYNOMIAL REPRESENTATIONS OF A BALANCED BICLIQUE COMMON NEIGHBORHOOD SYSTEM OF GRAPHS
A biclique in a graph $G$ is a subset of $V(G)$ which induces a complete bipartite subgraph of $G$. It is said to be balanced if it has equivalent independent vertex partitions. In this paper, we introduce a graph polynomial which represents the number of balanced bicliques of $G$ of all possible orders with corresponding common neighborhood systems and establish some results on some special graphs. Received: September 25, 2023Revised: October 10, 2023Accepted: November 1, 2023
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
42
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信