太阳问题中状态方程、原子数据和不透明性的接口

Q1 Earth and Planetary Sciences
Anil K Pradhan
{"title":"太阳问题中状态方程、原子数据和不透明性的接口","authors":"Anil K Pradhan","doi":"10.1093/mnrasl/slad154","DOIUrl":null,"url":null,"abstract":"ABSTRACT The dependence of the Rosseland Mean Opacity (RMO) on the equation of state and the number of included atomic levels of iron ions prevalent at the solar radiative/convection boundary is investigated. The ‘chemical picture’ Mihalas–Hummer–Däppen (MHD) equation-of-state (EOS), and its variant QMHD–EOS, are studied at two representative temperature–density sets at the base of the convection zone and the Sandia Z experiment: (2 × 106 K, 1023/cc) and (2.11 × 106 K, 3.16 × 1022/cc), respectively. It is found that whereas the new atomic data sets from accurate R-matrix calculations for opacities (RMOP) are vastly overcomplete, involving hundreds to over a thousand levels of each of the three Fe ions considered – Fe xvii, Fe xviii, Fe xix – the EOS constrains contributions to RMOs by relatively fewer levels. The RMOP iron opacity spectrum is quite different from the Opacity Project distorted wave model and shows considerably more plasma broadening effects. This work points to possible improvements needed in the EOS for opacities in high-energy–density plasma sources.","PeriodicalId":18951,"journal":{"name":"Monthly Notices of the Royal Astronomical Society: Letters","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Interface of Equation-of-State, Atomic Data and Opacities in the Solar Problem\",\"authors\":\"Anil K Pradhan\",\"doi\":\"10.1093/mnrasl/slad154\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT The dependence of the Rosseland Mean Opacity (RMO) on the equation of state and the number of included atomic levels of iron ions prevalent at the solar radiative/convection boundary is investigated. The ‘chemical picture’ Mihalas–Hummer–Däppen (MHD) equation-of-state (EOS), and its variant QMHD–EOS, are studied at two representative temperature–density sets at the base of the convection zone and the Sandia Z experiment: (2 × 106 K, 1023/cc) and (2.11 × 106 K, 3.16 × 1022/cc), respectively. It is found that whereas the new atomic data sets from accurate R-matrix calculations for opacities (RMOP) are vastly overcomplete, involving hundreds to over a thousand levels of each of the three Fe ions considered – Fe xvii, Fe xviii, Fe xix – the EOS constrains contributions to RMOs by relatively fewer levels. The RMOP iron opacity spectrum is quite different from the Opacity Project distorted wave model and shows considerably more plasma broadening effects. This work points to possible improvements needed in the EOS for opacities in high-energy–density plasma sources.\",\"PeriodicalId\":18951,\"journal\":{\"name\":\"Monthly Notices of the Royal Astronomical Society: Letters\",\"volume\":\"23 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-10-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Monthly Notices of the Royal Astronomical Society: Letters\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/mnrasl/slad154\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Earth and Planetary Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Monthly Notices of the Royal Astronomical Society: Letters","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/mnrasl/slad154","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Earth and Planetary Sciences","Score":null,"Total":0}
引用次数: 0

摘要

摘要研究了在太阳辐射/对流边界上流行的铁离子的Rosseland平均不透明度(RMO)与状态方程和包含原子能级数的关系。在对流区底部两个具有代表性的温度-密度集和Sandia Z实验(2 × 106 K, 1023/cc)和(2.11 × 106 K, 3.16 × 1022/cc)下,研究了“化学图”Mihalas-Hummer-Däppen (MHD)状态方程(EOS)及其变体QMHD-EOS。研究发现,从精确的r矩阵计算中得到的新原子数据集(RMOP)非常不完整,涉及到三种铁离子(fexvii, fexviii, fexix)中的每一种的数百到1000多个水平,而EOS对RMOs的限制相对较少。RMOP铁不透明谱与不透明项目畸变波模型有很大不同,显示出更多的等离子体展宽效应。这项工作指出了EOS在高能量密度等离子体源的不透明度方面可能需要改进的地方。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Interface of Equation-of-State, Atomic Data and Opacities in the Solar Problem
ABSTRACT The dependence of the Rosseland Mean Opacity (RMO) on the equation of state and the number of included atomic levels of iron ions prevalent at the solar radiative/convection boundary is investigated. The ‘chemical picture’ Mihalas–Hummer–Däppen (MHD) equation-of-state (EOS), and its variant QMHD–EOS, are studied at two representative temperature–density sets at the base of the convection zone and the Sandia Z experiment: (2 × 106 K, 1023/cc) and (2.11 × 106 K, 3.16 × 1022/cc), respectively. It is found that whereas the new atomic data sets from accurate R-matrix calculations for opacities (RMOP) are vastly overcomplete, involving hundreds to over a thousand levels of each of the three Fe ions considered – Fe xvii, Fe xviii, Fe xix – the EOS constrains contributions to RMOs by relatively fewer levels. The RMOP iron opacity spectrum is quite different from the Opacity Project distorted wave model and shows considerably more plasma broadening effects. This work points to possible improvements needed in the EOS for opacities in high-energy–density plasma sources.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Monthly Notices of the Royal Astronomical Society: Letters
Monthly Notices of the Royal Astronomical Society: Letters Earth and Planetary Sciences-Space and Planetary Science
CiteScore
8.80
自引率
0.00%
发文量
136
期刊介绍: For papers that merit urgent publication, MNRAS Letters, the online section of Monthly Notices of the Royal Astronomical Society, publishes short, topical and significant research in all fields of astronomy. Letters should be self-contained and describe the results of an original study whose rapid publication might be expected to have a significant influence on the subsequent development of research in the associated subject area. The 5-page limit must be respected. Authors are required to state their reasons for seeking publication in the form of a Letter when submitting their manuscript.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信