基于会话推荐的类别感知无损异构超图神经网络

IF 2.6 4区 计算机科学 Q2 COMPUTER SCIENCE, INFORMATION SYSTEMS
Yutao Ma, Zesheng Wang, Liwei Huang, Jian Wang
{"title":"基于会话推荐的类别感知无损异构超图神经网络","authors":"Yutao Ma, Zesheng Wang, Liwei Huang, Jian Wang","doi":"10.1145/3626569","DOIUrl":null,"url":null,"abstract":"In recent years, session-based recommendation (SBR), which seeks to predict the target user’s next click based on anonymous interaction sequences, has drawn increasing interest for its practicality. The key to completing the SBR task is modeling user intent accurately. Due to the popularity of graph neural networks (GNNs), most state-of-the-art (SOTA) SBR approaches attempt to model user intent from the transitions among items in a session with GNNs. Despite their accomplishments, there are still two limitations. Firstly, most existing SBR approaches utilize limited information from short user-item interaction sequences and suffer from the data sparsity problem of session data. Secondly, most GNN-based SBR approaches describe pairwise relations between items while neglecting complex and high-order data relations. Although some recent studies based on hypergraph neural networks (HGNNs) have been proposed to model complex and high-order relations, they usually output unsatisfactory results due to insufficient relation modeling and information loss. To this end, we propose a category-aware lossless heterogeneous hypergraph neural network (CLHHN) in this article to recommend possible items to the target users by leveraging the category of items. More specifically, we convert each category-aware session sequence with repeated user clicks into a lossless heterogeneous hypergraph consisting of item and category nodes as well as three types of hyperedges, each of which can capture specific relations to reflect various user intents. Then, we design an attention-based lossless hypergraph convolutional network to generate session-wise and multi-granularity intent-aware item representations. Experiments on three real-world datasets indicate that CLHHN can outperform the SOTA models in making a better trade-off between prediction performance and training efficiency. An ablation study also demonstrates the necessity of CLHHN’s key components.","PeriodicalId":50940,"journal":{"name":"ACM Transactions on the Web","volume":"19 1","pages":"0"},"PeriodicalIF":2.6000,"publicationDate":"2023-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"CLHHN: Category-aware Lossless Heterogeneous Hypergraph Neural Network for Session-based Recommendation\",\"authors\":\"Yutao Ma, Zesheng Wang, Liwei Huang, Jian Wang\",\"doi\":\"10.1145/3626569\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In recent years, session-based recommendation (SBR), which seeks to predict the target user’s next click based on anonymous interaction sequences, has drawn increasing interest for its practicality. The key to completing the SBR task is modeling user intent accurately. Due to the popularity of graph neural networks (GNNs), most state-of-the-art (SOTA) SBR approaches attempt to model user intent from the transitions among items in a session with GNNs. Despite their accomplishments, there are still two limitations. Firstly, most existing SBR approaches utilize limited information from short user-item interaction sequences and suffer from the data sparsity problem of session data. Secondly, most GNN-based SBR approaches describe pairwise relations between items while neglecting complex and high-order data relations. Although some recent studies based on hypergraph neural networks (HGNNs) have been proposed to model complex and high-order relations, they usually output unsatisfactory results due to insufficient relation modeling and information loss. To this end, we propose a category-aware lossless heterogeneous hypergraph neural network (CLHHN) in this article to recommend possible items to the target users by leveraging the category of items. More specifically, we convert each category-aware session sequence with repeated user clicks into a lossless heterogeneous hypergraph consisting of item and category nodes as well as three types of hyperedges, each of which can capture specific relations to reflect various user intents. Then, we design an attention-based lossless hypergraph convolutional network to generate session-wise and multi-granularity intent-aware item representations. Experiments on three real-world datasets indicate that CLHHN can outperform the SOTA models in making a better trade-off between prediction performance and training efficiency. An ablation study also demonstrates the necessity of CLHHN’s key components.\",\"PeriodicalId\":50940,\"journal\":{\"name\":\"ACM Transactions on the Web\",\"volume\":\"19 1\",\"pages\":\"0\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2023-10-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Transactions on the Web\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3626569\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on the Web","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3626569","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

基于会话的推荐(session-based recommendation, SBR)是一种基于匿名交互序列预测目标用户下一次点击的方法,近年来由于其实用性而受到越来越多的关注。完成SBR任务的关键是对用户意图进行准确建模。由于图神经网络(gnn)的流行,大多数最先进的(SOTA) SBR方法试图通过使用gnn的会话中项目之间的转换来建模用户意图。尽管他们取得了成就,但仍有两个局限性。首先,大多数现有的SBR方法利用了短用户-项目交互序列的有限信息,并且存在会话数据的数据稀疏性问题。其次,大多数基于gnn的SBR方法描述了项目之间的成对关系,而忽略了复杂的高阶数据关系。近年来,一些基于超图神经网络(hypergraph neural networks, hgnn)的研究提出了对复杂的高阶关系进行建模,但由于关系建模不足和信息丢失,结果往往不理想。为此,我们在本文中提出了一个类别感知无损异构超图神经网络(CLHHN),通过利用物品的类别向目标用户推荐可能的物品。更具体地说,我们将每个具有重复用户点击的类别感知会话序列转换为一个无损的异构超图,该超图由项目和类别节点以及三种类型的超边组成,每种超边都可以捕获特定关系以反映各种用户意图。然后,我们设计了一个基于注意力的无损超图卷积网络来生成会话智能和多粒度意图感知的项目表示。在三个真实数据集上的实验表明,CLHHN在预测性能和训练效率之间取得了更好的平衡,优于SOTA模型。消融研究也证明了CLHHN关键组成部分的必要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
CLHHN: Category-aware Lossless Heterogeneous Hypergraph Neural Network for Session-based Recommendation
In recent years, session-based recommendation (SBR), which seeks to predict the target user’s next click based on anonymous interaction sequences, has drawn increasing interest for its practicality. The key to completing the SBR task is modeling user intent accurately. Due to the popularity of graph neural networks (GNNs), most state-of-the-art (SOTA) SBR approaches attempt to model user intent from the transitions among items in a session with GNNs. Despite their accomplishments, there are still two limitations. Firstly, most existing SBR approaches utilize limited information from short user-item interaction sequences and suffer from the data sparsity problem of session data. Secondly, most GNN-based SBR approaches describe pairwise relations between items while neglecting complex and high-order data relations. Although some recent studies based on hypergraph neural networks (HGNNs) have been proposed to model complex and high-order relations, they usually output unsatisfactory results due to insufficient relation modeling and information loss. To this end, we propose a category-aware lossless heterogeneous hypergraph neural network (CLHHN) in this article to recommend possible items to the target users by leveraging the category of items. More specifically, we convert each category-aware session sequence with repeated user clicks into a lossless heterogeneous hypergraph consisting of item and category nodes as well as three types of hyperedges, each of which can capture specific relations to reflect various user intents. Then, we design an attention-based lossless hypergraph convolutional network to generate session-wise and multi-granularity intent-aware item representations. Experiments on three real-world datasets indicate that CLHHN can outperform the SOTA models in making a better trade-off between prediction performance and training efficiency. An ablation study also demonstrates the necessity of CLHHN’s key components.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACM Transactions on the Web
ACM Transactions on the Web 工程技术-计算机:软件工程
CiteScore
4.90
自引率
0.00%
发文量
26
审稿时长
7.5 months
期刊介绍: Transactions on the Web (TWEB) is a journal publishing refereed articles reporting the results of research on Web content, applications, use, and related enabling technologies. Topics in the scope of TWEB include but are not limited to the following: Browsers and Web Interfaces; Electronic Commerce; Electronic Publishing; Hypertext and Hypermedia; Semantic Web; Web Engineering; Web Services; and Service-Oriented Computing XML. In addition, papers addressing the intersection of the following broader technologies with the Web are also in scope: Accessibility; Business Services Education; Knowledge Management and Representation; Mobility and pervasive computing; Performance and scalability; Recommender systems; Searching, Indexing, Classification, Retrieval and Querying, Data Mining and Analysis; Security and Privacy; and User Interfaces. Papers discussing specific Web technologies, applications, content generation and management and use are within scope. Also, papers describing novel applications of the web as well as papers on the underlying technologies are welcome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信