关于Harris广义指数分布的一个注记

Q3 Mathematics
Oseghale Osezuwa Innocent, Ayoola Femi Joshua, Oluwole Adegoke Nuga
{"title":"关于Harris广义指数分布的一个注记","authors":"Oseghale Osezuwa Innocent, Ayoola Femi Joshua, Oluwole Adegoke Nuga","doi":"10.5539/jmr.v15n3p1","DOIUrl":null,"url":null,"abstract":"We introduce a four-parameter extension of the exponential distribution, which has the Exponentiated exponential, Marshall-Olkin exponential, and exponential distribution as sub-models. The proposed distribution has two important properties: it involves more parameters than the baseline model to obtain more flexibility and the extra parameters have a clear interpretation and representation. The proposed model is more flexible than any of its sub-models. Its probability density function can be monotone increasing, decreasing, or unimodal and its associated hazard rate may be increasing, decreasing, unimodal or bathtub-shaped. Statistical expression is obtained for certain structural statistical properties such as ordinary and incomplete moments, moment generating function, order statistics, quantile function, reliability function, and Renyi entropy. The maximum likelihood estimation method is used to obtain the estimates of the model parameters. An application of the new model to two lifetime data demonstrates the flexibility of the model.","PeriodicalId":38619,"journal":{"name":"International Journal of Mathematics in Operational Research","volume":"94 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Note on Harris Extended Generalized Exponential Distribution\",\"authors\":\"Oseghale Osezuwa Innocent, Ayoola Femi Joshua, Oluwole Adegoke Nuga\",\"doi\":\"10.5539/jmr.v15n3p1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We introduce a four-parameter extension of the exponential distribution, which has the Exponentiated exponential, Marshall-Olkin exponential, and exponential distribution as sub-models. The proposed distribution has two important properties: it involves more parameters than the baseline model to obtain more flexibility and the extra parameters have a clear interpretation and representation. The proposed model is more flexible than any of its sub-models. Its probability density function can be monotone increasing, decreasing, or unimodal and its associated hazard rate may be increasing, decreasing, unimodal or bathtub-shaped. Statistical expression is obtained for certain structural statistical properties such as ordinary and incomplete moments, moment generating function, order statistics, quantile function, reliability function, and Renyi entropy. The maximum likelihood estimation method is used to obtain the estimates of the model parameters. An application of the new model to two lifetime data demonstrates the flexibility of the model.\",\"PeriodicalId\":38619,\"journal\":{\"name\":\"International Journal of Mathematics in Operational Research\",\"volume\":\"94 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-05-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Mathematics in Operational Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5539/jmr.v15n3p1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Mathematics in Operational Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5539/jmr.v15n3p1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

摘要

引入指数分布的四参数扩展,将指数分布、Marshall-Olkin指数和指数分布作为子模型。所提出的分布有两个重要的特性:它比基线模型涉及更多的参数以获得更大的灵活性;额外的参数有清晰的解释和表示。所建议的模型比它的任何子模型都更灵活。其概率密度函数可以是单调的、增加的、减少的或单峰的,其相关的危险率可以是增加的、减少的、单峰的或浴缸形的。得到了一般矩和不完全矩、矩生成函数、阶统计量、分位数函数、可靠度函数、任义熵等结构统计性质的统计表达式。采用极大似然估计法对模型参数进行估计。将该模型应用于两个生命周期数据,证明了该模型的灵活性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Note on Harris Extended Generalized Exponential Distribution
We introduce a four-parameter extension of the exponential distribution, which has the Exponentiated exponential, Marshall-Olkin exponential, and exponential distribution as sub-models. The proposed distribution has two important properties: it involves more parameters than the baseline model to obtain more flexibility and the extra parameters have a clear interpretation and representation. The proposed model is more flexible than any of its sub-models. Its probability density function can be monotone increasing, decreasing, or unimodal and its associated hazard rate may be increasing, decreasing, unimodal or bathtub-shaped. Statistical expression is obtained for certain structural statistical properties such as ordinary and incomplete moments, moment generating function, order statistics, quantile function, reliability function, and Renyi entropy. The maximum likelihood estimation method is used to obtain the estimates of the model parameters. An application of the new model to two lifetime data demonstrates the flexibility of the model.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Mathematics in Operational Research
International Journal of Mathematics in Operational Research Decision Sciences-Decision Sciences (all)
CiteScore
2.10
自引率
0.00%
发文量
44
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信