Cayley图中的大强共谱顶点集

IF 0.8 Q2 MATHEMATICS
Peter Sin
{"title":"Cayley图中的大强共谱顶点集","authors":"Peter Sin","doi":"10.1007/s10013-023-00625-3","DOIUrl":null,"url":null,"abstract":"Strong cospectrality is an equivalence relation on the set of vertices of a graph that is of importance in the study of quantum state transfer in graphs. We construct families of abelian Cayley graphs in which the number of mutually strongly cospectral vertices can be arbitrarily large.","PeriodicalId":45919,"journal":{"name":"Vietnam Journal of Mathematics","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2023-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Large sets of Strongly Cospectral Vertices in Cayley Graphs\",\"authors\":\"Peter Sin\",\"doi\":\"10.1007/s10013-023-00625-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Strong cospectrality is an equivalence relation on the set of vertices of a graph that is of importance in the study of quantum state transfer in graphs. We construct families of abelian Cayley graphs in which the number of mutually strongly cospectral vertices can be arbitrarily large.\",\"PeriodicalId\":45919,\"journal\":{\"name\":\"Vietnam Journal of Mathematics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2023-05-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Vietnam Journal of Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s10013-023-00625-3\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Vietnam Journal of Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s10013-023-00625-3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

强共谱是图的顶点集上的一种等价关系,在图的量子态转移研究中具有重要意义。我们构造了阿贝尔凯利图族,其中强互共谱顶点的数目可以任意大。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Large sets of Strongly Cospectral Vertices in Cayley Graphs
Strong cospectrality is an equivalence relation on the set of vertices of a graph that is of importance in the study of quantum state transfer in graphs. We construct families of abelian Cayley graphs in which the number of mutually strongly cospectral vertices can be arbitrarily large.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.90
自引率
0.00%
发文量
52
期刊介绍: Vietnam Journal of Mathematics was originally founded in 1973 by the Vietnam Academy of Science and Technology and the Vietnam Mathematical Society. Published by Springer from 1997 to 2005 and since 2013, this quarterly journal is open to contributions from researchers from all over the world, where all submitted articles are peer-reviewed by experts worldwide. It aims to publish high-quality original research papers and review articles in all active areas of pure and applied mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信